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ABSTRACT 

 
In this paper we propose using histogram intersection for 

mammographic image classification. First, we use the bag-
of-words model for image representation, which captures 
the texture information by collecting local patch statistics. 
Then, we propose using normalized histogram intersection 
(HI) as a similarity measure with the K-nearest neighbor 
(KNN) classifier. Furthermore, by taking advantage of the 
fact that HI forms a Mercer kernel, we combine HI with 
support vector machines (SVM), which further improves the 
classification performance. The proposed methods are 
evaluated on a galactographic dataset and are compared 
with several previously used methods. In a thorough 
evaluation containing about 288 different experimental 
configurations, the proposed methods demonstrate 
promising results.  
 

Index Terms—Texture descriptors, bag-of-words, 
Vector quantization, histogram intersection, classification, 
x-ray galactograms 
 

1. INTRODUCTION 
 
Texture analysis has been widely used in medical image 
tasks as well as related fields such as computer vision and 
pattern recognition. Recently, bag-of-words models, 
originally used in document analysis, have been 
successfully extended to image based classification tasks 
[13]. Despite their success in image retrieval and category 
classification, bag-of-words models have not been 
thoroughly studied for image-based diagnosis tasks.  

In breast imaging, texture analysis is often desired to 
assess properties of the underlying breast ductal network. 
Texture patterns in these images are the radiographic effect 
of the underlying anatomical arrangement. Analysis of the 
mammographic texture, the parenchymal pattern, using 
various texture features, has demonstrated difference 
between the parenchymal pattern in women with low-risk of 
cancer and women with BRCA1/BRCA2 gene-mutations, 

which are associated with high risk [10]. On the other hand, 
analysis of such natural tree-like structures in biomedical 
images presents special challenges. For example, the 
surrounding tissue may obscure branching patterns. 
Galactography can be performed to visualize the breast 
ductal network by injecting a contrast agent into the 
lactiferous ducts of the breast. It is useful for visualizing 
early symptoms of papilloma or ductal ectasia, which cause 
spontaneous nipple discharge, without identifiable 
mammographic lesion [1].  

Our goal in this paper is to perform texture analysis in 
particular regions of interests (ROIs) in galactographic 
images in order to assist diagnosis. We propose using the 
histogram intersection (HI) in the bag-of-words framework 
for this task. In this framework, we first represent an image 
by treating it as a set of local patches. These patches are 
then vector quantized according to a codebook learned from 
training images. Then an image is represented by the code 
histogram of its patches. Such histograms are then 
compared for classification. For example, previous work in 
[6] uses a normalized l1 similarity with K-nearest neighbor 
(KNN) for galactographic image analysis. 

We propose two methods using histogram intersection 
(HI) for mammographic texture classification. The first 
method is to use a normalized HI in the KNN classifier. Our 
second proposal is to combine HI with support vector 
machines. Both methods are tested on a galactographic 
dataset containing both normal and pathologic samples. We 
designed a thorough evaluation containing 288 different 
configurations and eight different methods (five similarity 
measures and two classifiers). In the experimental 
evaluation HI-based methods outperformed other 
competitors, including previously reported solutions.  

In addition to the above contribution, the thorough 
experiments we performed help understanding the effect of 
different similarity measures. In particular, we found that 
normalization plays an important role in designing similarity 
measures for galactographic texture analysis, especially 
when used with the KNN classifier. In addition, we 



observed that SVM based methods perform significantly 
better than KNN based ones. 

The rest of the paper is organized as follows: in Section 
2 we provide background information and discuss previous 
work. In Section 3 we introduce the bag-of-words 
framework and the histogram intersection based methods. 
Then, we present the experimental evaluation in Section 4. 
Finally, Section 5 concludes the paper. 

 
2. BACKGROUND 

 
Texture analysis is an important tool for image analysis and 
has been used for several decades. Early work for texture 
analysis often focuses on low level features including color 
and local gradient statistics. For example, Gabor jets are 
used in content-based image retrieval systems [5], color 
distribution is used for image retrieval [14], etc. Recently, 
patch based methods attract great attention due to their 
richness in local information and flexibility in object 
deformation. The bag-of-words (BOW) model, originally 
used in document analysis, has proved to be very powerful 
for category classification tasks [13].  

In medical imaging, texture analysis has been used 
particularly for developing computer-aided diagnosis 
(CAD) systems, which gain increasing popularity due to 
their ability to improve the precision and accuracy of 
characterization by radiologists [7]. It has also been used for 
medical image retrieval, e.g., searching an input image in a 
database to find images similar to the input. The results are 
then used for accessing other clinical data and known 
diagnoses from similar cases [8].  

For breast imaging, in particular for galactographic 
images, many previous studies [2,3,4] have focused on 
investigating topological descriptors of tree-like structures 
representing the breast ductal network.  

Patch based texture analysis has been applied to x-ray 
galactographic images [6]. In the work, a similarity derived 
from normalized l1 metric is combined with KNN for 
classification tasks. In comparison, in this paper we use 
normalized histogram intersection for similarity and also 
investigate the performance by using support vector 
machines. Both methods outperform the normalized l1 on a 
galactographic dataset. 

The use of histogram intersection for image comparison 
dates back at least to [14], where HI was used to compare 
color histograms from two images. HI recently became very 
popular in object/category classification due to its 
robustness and the fact that it is a Mercer kernel. For 
example, in [11] and [12] HI was combined with SVM for 
image matching. To the best of our knowledge, however, it 
has not been applied to mammographic image analysis. HI 
also relates to the Mamdani intersection used in fuzzy logic. 

 
3. METHODOLOGY 

 

3.1. Bag-of-words Representation 
 
The basic idea of bag-of-words framework, when applied to 
images, consists of four steps: (1) build a codebook for local 
patches; (2) extract local patches for an image; (3) represent 
an image using the statistics of its quantized local patches; 
and (4) inference based on the statistics collected in (3). 
Figure 1 illustrates the process. 

 

 

Fig. 1: The bag-of-words framework.  

To compare with the previous work [6], we follow the 
same procedure for codebook generation, patch extraction, 
and image representation. Specifically, we use the 
Generalized Lloyd Algorithm (GLA) for codebook 
clustering, the regular grid decomposition for patch 
extraction, and code frequency histogram for image 
representation. 

In the following we denote the learned codebook as 
V={v1, v2, …, vn}, containing n vector quantized codes 
vid, which correspond to the ith cluster  center in the d 
dimensional feature space (in our case, the intensity values 
of pixels inside a patch). Then, for an image I, it is first 
decomposed into m patches P={p1, p2, …, pm}, each patch 
pid is then mapped as a word wi by 
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where ||.|| denotes the l2 norm. After that, a code histogram 
hn is build as   
 h(j)=#{wi: 1≤i≤n and wi=j}, 1≤j≤n 
where # denotes the cardinality of a set. We use h as a 
representation of the image I.  
 
3.2. Histogram Similarity 
Once the histogram representation of images is ready, the 
next key step is to find a good histogram similarity measure. 
Specifically, let h1 and h2 be code histograms for images I1 
and I2 respectively; the task is to find a similarity measure 
s(h1,h2) between them. In previous work [6], the following 
similarity measure was proposed  
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which has demonstrated promising classification results for 
mammography images. We denote this histogram similarity 
measure as sNL1 because it is closely related to the 
“Normalized” l1 distance.  

In this paper, we propose using histogram intersection 
instead, which is defined as 
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This representation, though simple, has been shown to be 
very useful for image retrieval and classification tasks 
[14,12,11]. It has the following advantages: 
1. It is suitable for partial matching and is therefore robust 

to occlusion and/or clutters. 
2. It is a Mercer kernel (i.e., a symmetric positive definite 

kernel), which can be combined with kernel based 
methods such as the Support Vector Machine (SVM). 

3. It can be computed very efficiently, which is important 
when generalizing to large scale tasks. 
Although HI can be used directly as a similarity 

measure, it suffers from the problem where histograms are 
very noisy. Inspired by [6], we define Normalized HI (NHI) 
as 
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which generates promising results as shown in Section 4. 
 
3.2. Image Classification using Histogram Intersection 
 
K Nearest Neighbor (KNN) is a widely used classifier, due 
to its simplicity and strong performance. To compare with 
previous work in [6], we use KNN with the normalized HI 
instead of the normalized l1 similarity.  

While KNN achieves pretty good results for our task, it 
is a simple classifier that may not work well for complicated 
tasks. In addition, as shown in [6], the performance of KNN 
can be very sensitive to the choice of K. 

In addition to KNN, we investigate using Support 
Vector Machines (SVM), which have demonstrated 
excellent performance in many classification tasks. Let h be 
the code histogram representation of an input image I, the 
SVM classifier has the following form 
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where ns is the number of support vectors, hi, li are the 
labels of corresponding support vectors, and αi and b are 
parameters learned from training samples. The kernel K(.,.) 
is very important since it determines the behavior of the 
classifier. When K(.,.) is symmetric positive definite, aka a 
Mercer kernel, SVM implicitly maps the original problem 
into a (usually) non-linear space. Histogram intersection has 
been proved to be a Mercer and therefore readily to be used 
in SVM, that is, 
 ),(),( hhshhK iNHi   . 

 

4. EXPERIMENTAL RESULTS 
 
In this section, we describe experiments using the proposed 
methods for texture classification of regions of interest 
(ROIs) manually extracted from x-ray galactograms [2]. 
These ROIs are taken from the galactogram area behind the 
nipple; such ROI selection has been shown to be highly 
indicative of a woman’s risk to develop pathology [9]. 
 
4.1. Dataset 
We use the same dataset in [6], which is part of a study in 
[2]. The dataset contains 23 galactographic images collected 
retrospectively from 14 patients. The images in the dataset 
form two groups: 10 cases with no radiological findings 
(NF) and 13 cases with radiological findings (RF). The 
images were digitized with a spatial resolution of (100 
micron)2/pixel using a Lumisys digitizer (Sunnyvale, CA). 

For each image, a ROI of size 256×256-pixel was 
manually segmented in the region of the breast behind the 
nipple. Our task is to classify each ROI based on its texture 
pattern. Figures 2 and 3 show several example texture 
patterns in the dataset. 
 
4.2. Methods 
We investigate the HI-based methods on the task along with 
several other approaches. Specifically, our experiments 
involve five different similarity measures and two 
classifiers, including: (1) l1+KNN, (2) Normalized l1+KNN 

[6], (3) Chi square+KNN, (4) Chi square+SVM, (5) 
HI+KNN, (6) HI+SVM, (7) Normalized HI+KNN, and (8) 
Normalized HI+SVM.  

To reduce the randomness in the experiments, we 
perform the experiments in many different configurations 
and report the average classification rates. To reduce the 
effects brought by different patch sizes, three different sizes 
are tested: 4×4, 8×8, 16×16. Codebooks with different 
numbers of codes are also used (256 or 512). For KNN, we 
tested K=1,2,3,4. Finally, to reduce the randomness in 
vector quantization, 12 random codebooks are generated 
given a fixed training/testing configuration. To summarize, 
the above combination generates 3×2×4×12=288 different 
configurations for KNN-based methods and 3×2×12=72 
configurations for SVM-based methods.  

 
4.3. Results 
We use leave-one-out scheme for evaluating the 
performance of different approaches. Specifically, each time 
one ROI is used for testing and the rest 22 ROIs are used for 
training. For each training/testing separation, we test all 
different configurations described above, and report the 
average classification rate. Finally, we calculate the average 
classification rate over all different ROIs. The classification 
rates are summarized in Table 1. In addition, some example 
ROIs that are frequently classified correctly or frequently 
misclassified are shown in Figures 2 and 3. 



 KNN SVM 
l1 59.2% n/a 

Normalized l1 [6] 69.8% n/a 
Chi square 58.2% 76.5% 

HI 59.2% 80.7% 
Normalized HI 70.5% 73.3% 

Table 1: Average classification rates of different methods. 

From the experimental results we have the following 
observations. First, histogram intersection does help 
improve the performance, especially when combined with 
SVM. Second, SVM is helpful as we expected. Third, for 
both HI and l1, normalization greatly helps to improve the 
performance when KNN is used. Fourth, from the example 
images in Figures 2 and 3, we can see that the problem is 
very challenging from the perspective of human vision, 
which may guide us for searching for better representation 
in the future. 

   
Fig. 2: The NF ROI (left) and the RF ROI (right) with the 
best classification rates. 

   

Fig. 3: The NF ROI (left) and the RF ROI (right) with the 
worst classification rates. 

5. CONCLUSION 
We investigate using histogram intersection (HI) in the bag-
of-words framework for mammography image 
classification. Specifically, we show that both normalized 
HI and HI+SVM outperform previous state-of-the-art 
methods on a real mammography image dataset. We also 
notice that, when using KNN classifiers, normalization is an 
important step that helps to improve the accuracy of 
histogram similarities.  

In the future, we plan to advance the study by including 
more data and thorough study. We will explore mainly 
along two directions: more effective texture representation 
and advanced classification techniques. In addition, it is also 

interesting to extend the study to different anatomic 
structures and modalities. 
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