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Abstract—Recently, sparse representation has been applied
to visual tracking to find the target with the minimum re-
construction error from a target template subspace. Though
effective, these L1 trackers require high computational costs due
to numerous calculations for ¢; minimization. In addition, the
inherent occlusion insensitivity of the /; minimization has not
been fully characterized. In this paper, we propose an efficient
L1 tracker, named Bounded Particle Resampling (BPR)-L1 tracker,
with a minimum error bound and occlusion detection. First,
the minimum error bound is calculated from a linear least
squares equation and serves as a guide for particle resampling
in a particle filter framework. Most of insignificant samples
are removed before solving the computationally expensive ¢,
minimization in a two step testing. The first step, named T
testing, compares the sample observation likelihood to an ordered
set of thresholds to remove insignificant samples without loss
of resampling precision. The second step, named max testing,
identifies the largest sample probability relative to the target
to further remove insignificant samples without altering the
tracking result of the current frame. Though sacrificing minimal
precision during resampling, max testing achieves significant
speed up on top of 7 testing. The BPR-L1 technique can also be
beneficial to other trackers that have minimum error bounds
in a particle filter framework, especially for trackers based
on sparse representations. After the error-bound calculation,
BPR-L1 performs occlusion detection by investigating the trivial
coefficients in the /; minimization. These coefficients, by design,
contain rich information about image corruptions including
occlusion. Detected occlusions are then used to enhance the
template updating. For evaluation, we conducted experiments
on three video applications: biometrics (head movement, hand
holding object, singers on stage), pedestrians (urban travel,
hallway monitoring), and cars in traffic (wide area motion
imagery, ground-mounted perspectives). The proposed BPR-L1
method demonstrates excellent performance as compared with
nine state-of-the-art trackers on eleven challenging benchmark
sequences.

Index Terms—Visual tracking, sparse representation, compres-
sive sensing, particle filter, /; minimization, occlusion detection,
minimum error bound.

I. INTRODUCTION

Visual tracking is an important topic for applications such as
security and surveillance, vehicle navigation, human computer
interaction, and so on. The challenges in designing a robust
visual tracking algorithm in a dynamic environment are caused
by the presence of noise, occlusions, varying viewpoints, back-
ground clutter and illumination changes. A thorough review
can be found in [41].

Recently, sparse representation [7], [11] has been success-
fully applied to visual tracking [14], [17], [22], [25]-[27],
[30], [31], [35], [38], [44]-[46]. In these methods, the tracking

problem is formulated as finding a sparse representation of the
target candidate using templates. The advantage of using the
sparse representation lies in the robustness to a wide range
of image corruptions, especially occlusion. The results show
good performance, however, at a computational expense of the
/1 minimization. Furthermore, the target states are estimated in
a particle filter framework and the computational cost grows
proportionally as the number of particle samples increases.
The large computational cost prevents the tracker from being
used in a real time system such as real time surveillance
and security operations. Furthermore, the rich information
captured in approximation coefficients has not been utilized
for occlusion analysis. For example, a gradual occlusion may
cause model drifting in the template set.

Inspired by the aforementioned research, we propose an
efficient tracking algorithm with a minimum error bound and
occlusion detection. Our first contribution is to improve the
run time efficiency of the L1 tracker by using an error bound
derived from the least squares computation. Specifically, we
observe that the computationally expensive reconstruction
error in the sparsely constrained ¢; minimization is lower-
bounded by the least squares reconstruction error, which can
be calculated efficiently. The observation motivates us to de-
sign a Bounded Particle Resampling (BPR) algorithm, which
greatly boosts the speed of the tracking algorithm. Specifically,
the probability of a tracking sample is calculated in two stages
of which most samples are filtered out before solving the ¢,
minimization. In the first stage, the sample is reconstructed
by simply projecting it onto the target template subspace. The
reconstruction is solved through a linear least squares equation
that runs several orders faster than a typical ¢; minimization.
In the second stage, only dynamically selected samples that
pass the two step testings from previous stage are processed
through ¢; minimization. By this two stage reconstruction,
the computational cost is greatly reduced and the proposed
tracker runs much faster than our previous L1 tracker [30].
The BPR technique can also be beneficial to other trackers
that have minimum error bounds in a particle filter framework,
especially for trackers based on sparse representations. For
example, the BPR technique can be applied to [25], [26], [38]
to further improve the speed of their trackers.

Our second contribution is an occlusion detection method
that investigates the reconstruction coefficients to improve
the template update procedure. The ¢; minimization based
reconstruction used in our previous method [30] is known
to capture occlusion information, which has been previously
used for face recognition [36]. While this property enables



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, XXX 2013

tracking occluded targets, it also induces risks by introducing
the occluded target information into the template set and
potentially causing tracking failures. To prevent the wrong
information from contaminating the template set, we introduce
an occlusion detection method. The idea is to first build an
occlusion map from the trivial coefficients, which indicate
pixel-wise image contamination in a given candidate. The
occlusion map is then used for occlusion detection and a
candidate with detected occlusion will not be used to update
the template set.

For evaluation, the proposed BPR-L1 tracker is tested on
eleven benchmark sequences involving various challenges such
as occlusion and illumination changes. The sequences come
from three different application scenarios: biometrics (head
movement, hand holding object, singers on stage), pedestrians
(urban travel, subway monitoring), and cars in traffic (wide
area motion imagery, ground-mounted perspectives). In all
experiments, our method shows excellent effective (accuracy)
and efficient (timeliness) performance in comparison with
previously proposed trackers.

The remainder of the paper is organized as follows. The
related work is explained in Section II. Section III presents
the particle filter algorithm preliminaries. In Section IV-A, we
briefly review the L1 tracker proposed in previous work and
its limitations. Section IV-B derives the minimum error bound.
The BPR-L1 technique with two step testings is described in
Section IV-C. An occlusion detection method is proposed in
Section V. Experimental results on both methods are reported
in Section VI. Finally, we conclude the paper in Section VII.

II. RELATED WORK

Visual tracking is an important topic in computer vision and
it has been studied for decades. The visual tracking problem
can be formulated in two different categories: generative and
discriminative. Generative tracking methods use an appear-
ance model to represent the target observations. Tracking
is formulated as searching the target location that has the
most similar appearance to the model. One example is using
subspace models. The idea is that the images of the target
lie in a low dimensional manifold. The appearance of the
object is represented using an eigenspace [5], affine warps
of learned linear subspaces [13], an incrementally learned
low-dimensional subspace [33], the novel incremental tensor
subspace [15], online appearance model [8], etc. Other popular
tracking methods include mean shift tracker [10], covariance
tracker [32], and frag tracker [1].

Discriminative tracking methods cast the tracking as a bi-
nary classification problem. Tracking is formulated as finding
the target location that can best separate the target from the
background. In [2], a feature vector is constructed for every
pixel in the reference image and an adaptive ensemble of
classifiers is trained to separate pixels that belong to the object
from pixels that belong to the background. The TLD tracker
[19] uses P-N learning [18] to exploit the structure of the
data and get feedback about the performance of the classifier.
It is shown to be reliable in long sequence tracking. In [9],
a confidence map is built by finding the most discriminative
RGB color combination in each frame.

One intuitive way of improving discriminative and genera-
tive methods is to combine them together in a hybrid way.
A hybrid approach that combines a generative model and
a discriminative classifier captures appearance changes and
allows object reacquisition after a total occlusion [43]. A
three-level hierarchy combines the discriminative and gener-
ative models for tracking under the framework of sequential
Bayesian learning in [24].

Many trackers have been proposed to compensate for occlu-
sion induced track failures. Online multiple instance learning is
used in [3] to achieve robustness to occlusions as well as other
image corruptions. Global mode seeking detects the object
after total occlusion and reinitializes the local tracker [42].
In [22], a novel algorithm is proposed to detect occlusion for
visual tracking through learning with observation likelihoods
and is combined with a L1 tracker [30]. Another example [6]
uses image fusion to determine the best appearance model for
discrimination and then a generative approach for dynamic
target updates.

Particle Filter (PF) has been introduced for visual track-
ing [16] and has been a popular framework due to excellent
performance for nonlinear target motion and flexibility to
different object representations. While the use of more particle
samples can improve track robustness, the computational load
required by the particle filter also increases. Some authors have
proposed to speed up the particle filter framework. In [40], the
observation likelihood based on multiple features is computed
in a coarse-to-fine manner so that the computation can quickly
focus on the more promising regions. In [20], an efficient
method is introduced for using subspace representations in
a particle filter by applying Rao-Blackwellization to integrate
out the subspace coefficients in the state vector. Fewer samples
are needed since part of the state vector posterior is analyt-
ically calculated. In [47], it adjusts the number of particle
samples based on the noise variance.

Sparse representation has recently been introduced for track-
ing in [30] and later exploited in [14], [22], [25]-[27], [38].
In [30], a tracking candidate is sparsely represented as a
linear combination of target templates and trivial templates
that only have one nonzero element. The sparse representa-
tion problem is solved through an ¢; minimization problem
with non-negativity constraints to solve the inverse intensity
pattern problem during tracking. In [26] the group sparsity
is integrated and very high dimensional image features are
used for improving tracking robustness. In [38], a novel blur-
driven tracker framework for tracking motion-blurred targets
is proposed. It introduces a blur template subspace and track
the target without performing deblurring. In [25], a real-time
tracker is proposed by adopting dimensionality reduction and a
customized Orthogonal Matching Pursuit (OMP) algorithm to
accelerate the tracking. In [4], a very fast numerical solver is
developed to solve the resulting ¢; norm related minimization
problem with guaranteed quadratic convergence based on the
accelerated proximal gradient approach. In [27], a tracking
algorithm with a static sparse dictionary and dynamic online
updated basis distribution is developed. Our work is inspired
by these studies, but we use an ¢, error bound to improve
efficiency and introduce an occlusion map for a reliable
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template update. In [39], several fast £; minimization methods
have been reviewed and compared. The focus of this paper
is to improve the speed by exploiting the structure of the
particle filter and combining with the ¢5 bound. This technique
is different from the efforts of finding fast ¢; minimization
algorithms such as [4], [25] and in fact the two can be
combined. Therefore, we did not evaluate through all different
{1 minimization algorithms.

Our work shares philosophies with works where the error
bound is used to guide visual tracking. For example, in [28]
a boosting error bound in a co-training framework is used to
guide the novel tracker construction. However, the application
of using an error bound in a sparse tracker has not been well
explored. Furthermore, our goal is to use the error bound for
speed up without sacrificing accuracy (7 testing) or without
altering the tracking result (max testing). The 7 testing is first
described in a preliminary conference version of this work
in [31]. In comparison, this paper introduces the new max
testing for further improvement and involves more thorough
evaluations.

IITI. PARTICLE FILTER

The L1 tracker proposed in [30] is formulated as finding a
sparse representation in the template subspace. The represen-
tation is then used with the particle filter framework [16] for
visual tracking. Specifically, for frame at time ¢, we denote
x; as the state variable describing the location and shape
of a target. The tracking problem can be formulated as an
estimation of the state probability p(x¢|z1.;), where z1.;, =
{z1,22,-- ,2;} represents the observations from previous ¢
frames. The tracking proceeds using a two-stage Bayesian
sequential estimation, which recursively updates the filtering
distribution as

p(xe|z1_1) = / p(xe |1tz )dxe—t (1)
p(xt‘zlct) X p(zt|Xt)P(Xt|let71) y 2)

where p(x;|x,_1) indicates the state transition probability, and
p(z:|x¢) gives the observation likelihood of state x;. Direct
calculation of the above distribution is practically intractable.
Alternatively, the posterior p(x;|z1.;) is approximated by a set
of N particle samples {x:}}¥ , with importance weights 7.
The samples are updated and resampled at each frame.

In the L1 tracker, the state variable x; contains six pa-
rameters of the affine transformation. The state transition
of x, are modeled independently by a Gaussian distribution
around the previous state x;_;, and N candidate samples are
generated based on the state transition model p(x;|x;_1). The
observation model p(z;|x;) reflects the similarity between a
target candidate and the target templates, which is formulated
using approximation error in the sparse representation.

For tracking at time ¢, the candidate with the maximum
observation likelihood is chosen as the tracking result. The
likelihood determines sample weights and importance resam-
pling thresholds in the particle filter. A summary of the particle
filter for L1 tracker is given in Algorithm 1.

Algorithm 1 Particle filter for L1 tracker
1: At t = 0, initialize samples x}, for i = 1,2,--- , N
2: for t = 1 to number of frames do
3:  for ¢ =1 to number of samples do
Draw sample x; with respect to p(x|x;—1)
Prepare the observation y: from x!
Calculate the observation probability p(y¢|x})
Resample with respect to p(y:|x:), the number of
times that x! appears in the new set is N * p(yi|x})
8: end for
9: end for

AN

IV. EFFICIENT L1 TRACKER WITH BOUNDED PARTICLE
RESAMPLING

In this section we will first review the original LI
tracker [30] that combines the sparse representation and the
particle filter framework. Then we will present the least
squares based minimum error bound, which can be more
efficiently computed than the error calculated used in the L1
tracker through ¢; minimization. After that, we propose the
BPR-L1, using the BPR procedure to increase efficiency.

A. LI Tracker with Sparse Representation

To model the observation likelihood p(z:|x;), a region
corresponding to state x; is first cropped from frame z;!. The
region is then normalized and reshaped to a 1D vector y, which
is used as a target candidate.

The sparse representation of y is formulated as a minimum
error reconstruction through a regularized ¢; minimization
with nonnegativity constraints

NG

min | Be—y[3+Alcli , st ex0, ()

where B = [T,I, —I] is an over-complete dictionary com-
posed of the target template set T, the positive and negative
trivial template sets I and —I. Each column in T is a target
template generated by reshaping pixels of a candidate region
into a column vector; and each column in the trivial template
sets is a unit vector that has only one nonzero element.
c=[a",et T, e T] " is composed of target coefficients a and
positive and negative trivial coefficients e™, e~ respectively.

Finally, the observation likelihood is derived from the
reconstruction error of y as

1
p(zlx) = fexp{—a | Ta—y|*}, )

where a is obtained by solving the ¢/; minimization (3), « is
a constant controlling the shape of the Gaussian kernel, and
I' is a normalization factor.

B. Minimum Error Bound

In this section, we will show that the reconstruction error
from the target templates with an /5 norm is bounded by a
minimum error that can be calculated much faster than solving
an {1 minimization.

I'The frame at time ¢ is treated as the observation z:.
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1) Least squares error bound: The observation likelihood
defined in (4) builds on the reconstruction error || Ta —y ||?
measured in the ¢ norm. Since a is calculated by the ¢;
minimization (3), there is a natural lower bound for the
reconstruction error

| Ta—y|*>| Ta—y|? , (5)

where

(6)

a= argmbin | Tb —y ||?

is the linear least squares approximation of y in the subspace
spanned by T. One can also view a as a degenerate case of
a when A = 0 in (3). Similarly, for the observation likelihood
p(z¢|x;), we derive its upper bound ¢(z:|x;) using the least
squares approximation error

1 .
a(zlxi) = Fexp{—a || Ta—y |}, ©)
where « and I' are the same as in (4). We immediately have

p(ze]x:) < q(ze]xt) - (®)

2) Efficiency analysis: The linear system in (6) can be
solved by Cholesky factorization or QR factorization. For
dense matrices, the cost of the Cholesky factorization method
is dn? + (1/3)n3, while the cost of the QR factorization
method is 2dn?, where d is the image dimension and n is the
number of templates. The QR factorization method is slower
by a factor of at most 2 if d > n, which is the case for our
problem. For small and medium-size problems, the factor of
two does not outweigh the difference in accuracy, and the QR
factorization is the recommended method.

The original L1 tracker uses the preconditioned conjugate
gradients (PCG) method [21] to solve the ¢; minimization.
The PCG algorithm computes the search direction and the
run time is determined by the product of the total number
of PCG steps required over all iterations and the cost of a
PCG step. The total number of PCG iterations required by the
truncated Newton interior-point method depends on the value
of the regularization parameter \. In the experiments, we found
that the total number of PCG steps is a few hundred. The
computationally most expensive operation for a PCG step is a
matrix-vector product which has O(d(2d +n)) = O(d? + dn)
computing complexity.

From the complexity analysis, we can see the solution to
the least squares problem in (6) is two orders faster than the ¢;
solution. For example, if we are using template size of 15x 12,
then d = 15 x 12 = 180. The number of templates is n = 10.
The cost of Cholesky factorization method is dn?+(1/3)n?® =
180 x 100 4 (1/3) x 1000 =~ 18000. While the cost of a PCG
step is O(d? + dn) = 0O(32400), and there will be a few
hundred such steps.

C. Bounded Particle Resampling

In the previous section, we showed that the computation is
much more intensive to compute the observation probability
p(z¢|x;) than to compute its upper bound g(z;|x;). It is there-
fore attractive to use the upper bound for samples that are not
promising enough and only conduct likelihood computations
for the promising samples. Nevertheless, to search for the

candidate with the maximum likelihood, we still need the
observation probabilities for resampling. Fortunately, in many
cases only a small portion of the samples will be preserved
after resampling and an efficient algorithm can be designed
to avoid computing all observation probabilities. We propose
a two step testing to remove most insignificant samples from
computing the /; minimization. The first step is 7 festing. The
likelihood of the samples is compared with 7 which is the
summation of all previous calculated observation probabilities
and the ones smaller than 7 are removed without loss of
precision during resampling. The second step is max testing.
The tracking result for the current frame is defined as the
sample that has the maximum observation probability p. The
likelihood bound of the samples is compared with the current
calculated maximum observation probability. A tracking result
is found if the likelihood bound is smaller than the maximum
observation probability. The samples below the maximum ob-
servation probability will not affect the current-frame tracking
result, but only affect the resampling. Since the remaining
samples do not affect the current frame, we approximate the
remaining samples observation probability by interpolation.
We divide the remaining samples into several groups. For each
group, we calculate the observation probability for the first
and last sample from the ¢; minimization, and the probability
of the middle samples is approximated by interpolation. The
insignificant samples are further removed without altering the
tracking result. Although sacrificing minimal precision during
resampling, we achieve significant speed up from max testing
in addition to the efficiency obtained from the thresholding in
the first step.

1) 7 Testing: We denote X; = {x},x?,---,x\V} as the
sample set at time ¢, and denote p; = p(zi|x!) as the observa-
tion probability and its corresponding upper likelihood bound,
q; = q(zi|x}), defined in previous subsection. At the end of
each frame, the samples are resampled with respect to their
observation probabilities. We have the following observation.

Observation 1. If the sample appears at least once in the
resampled set, its observation probability must satisfy the
following condition

1
R DI ©

The observation is straightforjvzvallrd because the number of
samples remains unchanged before and after resampling. In
order for the sample to appear in the resampled set at least
once, the normalized probability p; / Zjvzl p; has to be greater
than ﬁ The “2” in the denominator is due to rounding.

Motivated by the observation, we develop a two-stage
bounded resampling algorithm to calculate the probability of
the tracking candidates. The first stage is straightforward: we
compute the probability bounds ¢; for all samples and sort
them in descending order. Without loss of generality, in the
following we assume the samples are already sorted, i.e.,
Q12422+ Z4qN.

In the 7 testing, our task is to calculate the observation
probability p; for samples that will survive resampling. The
observation probability can be done efficiently even for large
number of samples by using a dynamically updated threshold 7
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to exclude to-be-discarded samples. In particular, 7 is defined
according to the following theorem:

Theorem 1. If the it" sample x; appears at least once after
resampling, its likelihood bound q; is no less than a threshold
T; defined as

i—1
1

Ti= o1 2P (10)

j=1

Proof: From Observation 1, we have

N i

2Npi > > pi >y ;- (11)
j=1 j=1

Subtract p; on both sides and divide by 2N — 1, we have

1 i—1
pzZZNi]_;pJ—Tz- (12)
Using the fact that ¢; is an upper bound of p;, we have
¢ 2 Ppi 2T n

From the definition, we see that the thresholds are non-
decreasing, i.e., 0 =7 < 7o < --- < 7y, and there is

bi
TTON 1
which can be used for an efficient threshold update.

With the above thresholds, in the 7 testing, we start with
the first sample that has the largest likelihood bound g,
and calculate the probability p; according to (4) and update
the corresponding threshold 75 according to (13). Then we
continue for samples 2, 3, .... For the ith sample, if the
likelihood bound ¢; > 7;, we compute the observation prob-
ability p; and update threshold 7;4;. Otherwise if ¢; < 7,
which according to Theorem 1, implies that X;,X; 41, -+ , Xy
will be discarded during resampling. Then, we directly set
pi = pi+1 = --- = pny = 0. The probabilities py,pa,- - , PN
are then used for resampling set .

The above 7 testing procedure does not sacrifice resampling
precision, which is guaranteed by Theorem 1. 7 testing avoids
the expensive computation on samples with low likelihoods.
The amount of time saved is mainly determined by the dis-
similarity between the tracking foreground and its surrounding
background. Intuitively, the larger the foreground/background
difference, the more speedup from the BPR procedure. Fur-
thermore, the 7 testing framework encourages using more
particles with larger sampling variance in comparison with the
previously proposed L1 tracker [30]; this in turn helps improve
tracking accuracy in addition to computational efficiency.
Empirical studies. Fig. 1 shows the curves of p, ¢, and 7
when 600 particles are used. The values are calculated from
one testing frame. After about 100 particle samples, when ¢
becomes smaller than 7 that is defined in Theorem 1 and
fails the 7 testing, the probability p of the rest samples are
assigned to O without calculating the computational expensive
¢; minimization. Hence log(p) drops suddenly since log(p)
becomes negative infinity when p is 0. For this frame, only
20% of the samples need to solve the ¢; minimization, and
we achieve about 5 times speed up for this frame.

Fig. 2 shows the run time and the number of particle
samples for which the ¢; minimization is performed. We can

13)

Ti+1 =

— log(p)
—log(a)
-10 —log(1)
Z-20
=
©
o)
o
s —30
-40
—-50 . I ’ ’ :
0 100 200 300 400 500 600
particle sample
Fig. 1. The curves of p, ¢, and 7. The logarithm is applied to the data for

display purpose.

OneleaveShopReenter2cor
350 ‘ ‘

—particles
—run time per frame

300

particle number
N - N N
o [6)] o 0
o o o o

(4]
o

200
frame number

0 100 300 400

Fig. 2. The run time and number of particle samples for sequence
OneLeaveShopReenter2cor using T testing.

see that the run time is proportional to the number of the
samples and is dominated by the second stage probability
calculation. For most of the frames in the sequence, only
20% of the particle samples are used in the ¢; minimization
update. Notice in Fig. 2, from frame 190 to 230, the man
comes out of the shop and the woman is partially occluded.
We clearly see that the number of particles calculating for
the ¢; minimization increases dramatically when the target is
occluded. When the target is occluded, none of the samples can
model the target appearance well enough so the probabilities
are distributed between the particles. When the probabilities
are evenly distributed, more particles are needed, which results
in a longer run time for the frame. The more probabilities
concentrate on the first few samples, the less particles are
needed for the ¢; minimization calculation.

2) Max Testing: If at certain point, the likelihood bound g;
is smaller than the maximum of the observation probability
Pmazs Where Prmae = maxj—1,.. ,—1{p;}, then the tracking
result is found. The observation probability p;, where j =
i,1+1,--- ,n, only affects the resampling and does not impact
the current-frame tracking result. Inspired by this, we propose
a max testing operation to further reduce the insignificant
samples without altering the tracking result. This max testing
has the flexibility to be combined with the 7 testing to further
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—log(T)
log(p
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particle sample
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Fig. 3. The curves of p, q, 7, and pmae. The logarithm is applied to the
data for display purpose.

speed up the L1 tracker. The number of ¢; minimization
calculations is reduced to a fixed number depending on the
number of groups that the particles are divided into. First, the
rest particles from ¢ to IV are divided into k groups. Second,
for each group, we calculate the observation probability of
the samples whose likelihood bounds are the maximum and
minimum in the group and greater than 7. For the samples
whose likelihood lies in between, the observation probability
is the linear interpolation of the two. The maximum number
of /1 minimization is a fixed number of 2k. The proposed two
stage bounded resampling is summarized in Algorithm 2.
Empirical studies. Fig. 3 shows the curves of p, ¢, 7, and
DPmaz calculated from one frame when 600 particles are used.
After 55 particle samples, g is becoming smaller than p,,qy,
and the probability of the remaining samples is the linear
interpolation between the first and last observation probability
of each group. After 179 particle samples, ¢ is becoming
smaller than 7, the probability p of the rest samples are
assigned to 0 without calculating the computational expensive
¢1 minimization. For this frame, only about 10% of the
samples need to solve the ¢; minimization, and we achieve
about 10 times speed up for this frame.

Fig. 4 shows the run time and the number of particle samples
for which the ¢/; minimization is performed using both 7 and
max testing. We can see that the run time is proportional to
the number of the samples and is dominated by the second
stage probability calculation as in Fig. 2. It has similar curve
as in Fig. 2 as well. For most of the frames in the sequence,
only 7% of the particle samples calculate the £; minimization.
The average particle samples per frame for this sequence is
about 30, and 300 particles are used for the experiment. We
achieve about 10 times speed up for this sequence.

V. OCCLUSION DETECTION

The template set needs to be updated to capture the ap-
pearance variations of the target during tracking. In [30], the
tracking result is added to the template set if none of the
template is similar to the tracking result. Therefore, the tracker
is vulnerable to failures when the tracking result with a large
occlusion is added to the template set. To prevent an improper
addition to the template set, we propose a method to detect
the large occlusion in the tracking result before it is added

Algorithm 2 Two-stage Bounded Resampling

1: Input: sample set X;_; = {xi_;}¥,
. Output: sample set X; = {x{}

: [*Stage 1%/

: fori=1to N do

3
4
5. Draw sample x! from xi_

6:  Prepare the sample appearance y¢ from x!
7

8

9

(3]

Solve the linear least squares problem (6) for y:
. Compute ¢; according to (7)
: end for
10: Sort samples in descending order according to g;

11: /*Stage 2%/

1221+ 1,71+ 0

13: while 7 < N do

14:  /*7 Testing*/

15: if ¢; < 7; then

16: break

17:  end if

18:  /*max Testing*/

19:  if ¢; < max{pj}j;l1 then
20: r< (N—i+1)/k

21: for [ =1to k do
22: Ty = argminj{qj > n};’_-;—l
23: Solve the ¢; minimization (3) for yi and y]f
24: Compute p; and p; , according to (4)
25: if q; == qi,, then
26: pj < Pi+pi,)/2 G=14 im
27: else
28: pj<_pi+(]gﬁ(p(;::f7w’j:ia”'aim
29: end if
30: if i,, <i+r — 1 then
31: 14 im
1 i—1
32: Ti ¢ aN—T 2_j=1Pj
33: break
34: else
35: 14 i+r _
36: Ti ¢ gt Y1 P
37: end if
38: end for
39:  else
40: Solve the ¢; minimization (3) for y!
41: Compute p; according to (4)
42: Ti+1(*7_i+pi/(2N*]-)
43: t—1+1
44:  end if

45: end while

46: p; 0, Vj >1

47: /[*Resampling*/

48: X; < Resample {x:} | with respect to {p;}}¥,

to the template set. Fig. 5 illustrates the occlusion detection
algorithm flow.

For occlusion detection, we investigate the responses in the
trivial templates when solving the ¢; minimization (3). The
trivial templates are activated when the pixel intensity can not
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Fig. 4. The run time and number of particle samples for sequence
OneLeaveShopReenter2cor using both 7 and max testing.
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cocfficients

Fig. 5. The flow chart of the occlusion detection algorithm.

be well approximated using the target templates. Therefore,
we explore the trivial template coefficients for the occlusion
detection. We convert the 1D trivial coefficient vector to a
2D trivial image by reversing the way that the target template
is vectorized. Each pixel in trivial image is mapped to the
pixel in the same location in the template image. We threshold
the trivial image and obtain another 2D binary image that
we call an occlusion map. The white pixel in the occlusion
map indicates that the pixel is occluded and the black pixel
indicates no occlusion. We assume that an occluder is large in
size and its intensity is different enough to be separated from
small random noise. Therefore, the occlusion is a large con-
nected region in the occlusion map. The occlusion detection
is then reduced to finding a white area that is large enough
to be classified as an occlusion. After applying morphological
operations to the occlusion map to remove the small areas and
fill the small holes between regions, we count the number of
pixels in the largest region. If the area is larger than a pre-
defined threshold, say 30% of the area in the occlusion map,
we conclude that there is an occlusion in the tracking result,
and the template set should not be updated.

Normally when an occlusion is detected, it will persist for
a certain period of time. For example, when the target is
occluded by an object, and the object is moving away from
the target, the occlusion becomes smaller before it disappears.
In our occlusion detection method, we avoid updating the
template set for the next five frames after an occlusion is
detected. Future work would optimize the frame selection
based on the scenario.

For illustration, Fig. 6 shows tracking results of the faceocc2
sequence with frame 710 (left column) and 742 (right column).
The top row shows the tracking result without occlusion han-
dling, while the bottom row with occlusion handling. In frame
710, the target, face, undergoes heavy occlusion by a book.

Without occlusion detection, the templates are contaminated
and the tracker drifts apart in frame 742. The proposed tracker,
by contrast, is able to follow the target after the book is moved
away from the face.

Fig. 6. Example tracking results of the faceocc2 sequence without occlusion
detection (top) and with occlusion detection (bottom).

VI. EXPERIMENTS

We implemented the proposed approach in MATLAB with
the SPArse Modeling (SPAM) Software package® [29] and
evaluated the performance on eleven publicly available video
sequences.> We use these sequences to test various challenges
including background changes (illumination), target changes
(pose and scale), occlusion variations (none, partial, and sig-
nificant), and cluttered environmental conditions (bleaching,
multiple targets, and bright spots/rays).

The « (Eq. 4) controlling the shape of the Gaussian kernel
and the regularization parameter A (Eq. 3) are initialized to
40 and 0.01 for all the experiments. The number of groups &
in max testing is set to 3. Our proposed tracker is compared
with nine state-of-the-art trackers include Incremental Visual
Tracking (IVT) [33], Multiple Instance Learning (MIL) [3],
Visual Tracking Decomposition (VTD) [23], Generalized Ker-
nel Tracking (GKT) [34], L1 tracker (L.1) [30], Covariance
Tensor Learning (CTL) [37], Online AdaBoost (OAB) [12],
Tracking-Learning-Detection (TLD) [19], and local sparse
appearance model (SPT) [27]. The comparative tracker results
were obtained by running the source code or binaries provided
by their authors using the same initial positions in the first
frame.

Our method is implemented in MATLAB and can process
5 frames per second on an Intel Core2Duo 2.66GHz standard
PC with 8 GB memory. We expect our method to process 10
to 15 frames per second with optimized implementation. We
use the same number of particles for trackers involving particle
filtering for fair comparison.

Zhttp://www.di.ens.fr/willow/SPAMS/downloads.html

3Sequences 1-3 were from  http://www.cs.toronto.edu/"dross/ivt/.
Sequences 4-7 were from the PETS 2001 dataset
http://www.cvg.cs.rdg.ac.uk/  PETS2001/, http://groups.inf.ed.ac.uk/vision
/CAVIAR/CAVIARDATA1/, http://vision.stanford.edu/ birch/headtracker
/seq/, http://vision.ucsd.edu/"bbabenko/project_miltrack.shtml, and
http://www.dabi.temple.edu/ hbling/code_data.htm
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Fig. 7. Tracking results of the car4 sequence.

Fig. 8.

Tracking results of the David Indoor sequence.

A. Qualitative Comparison

The first sequence, car4, shows a vehicle undergoes drastic
illumination change as it passes beneath a bridge and under
trees. Tracking results on several frames are presented in
Fig. 7. The BPR-L1 tracker, L1 tracker, IVT, TLD and CTL
are able to track the target well even through the drastic
illumination changes, while the other trackers lose the target
due to the illumination change after it goes under the bridge.

The second sequence, David Indoor, was captured in an
indoor environment. Results on several frames are presented
in Fig. 8. The BPR-LI tracker, L1 tracker, IVT, TLD, OAB
and MIL track the target faithfully throughout the sequences.
The other trackers fail to track the target when there are both
pose and illumination changes.

Results on the third sequence, sylvester, are shown in
Fig. 9. It shows a moving animal doll and presents challenging
lighting, pose, and scale changes. The L1 tracker, IVT, and
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==GKT

MIL
==Q0AB
==CTL
==\/TD
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—1

TLD

SPT
==BPR-L1

VTD eventually fail in frame 736 as a result of a combination
of drastic pose and illumination change. The BPR-L1, GKT,
MIL, OAB, TLD and CTL trackers are able to track the target
for this long sequence, though GKT and SPT are a little off
the target in frames 521, and 546.

In the fourth sequence, PETSOIDIHumanl, a person is
walking from right bottom corner to the left of the image
(Fig. 10). The target is very small compared to the image
and therefore does not have much discrimination against the
background. Most trackers, including BPR-L1, track the target
successfully. IVT and SPT lock to the background and are not
able to recover from early failures.

The fifth sequence, OneLeaveShopReenter2cor, includes
people walking in and out of a crowded hallway. In this video,
the background color is similar to the color of the woman’s
trousers, and the man’s shirt and pants have a similar color to
the woman’s coat. In addition, the woman undergoes partial
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Fig. 10. Tracking results of the PETSOID]Humanl sequence.

occlusion. Some result frames are given in Fig. 11. The BPR-
L1, L1 and TLD trackers are able to track the target during the
entire sequence. Many other trackers lock on the man when
he occludes the woman after he comes out of the shop.

Results of the sixth sequence, girl, are shown in Fig. 12.
In this sequence, we show the robustness of our algorithm in
handling occlusion and large pose changes. All the trackers
track the target in the entire sequence except for the MIL,
which loses the target in the frame 466.

Results on the seventh sequence, Occluded Face, are shown
in Fig. 13. Many trackers start drifting from the target when
the man’s face is almost fully occluded by the book. The BPR-
L1 tracker explicitly handles occlusions, and update target
templates accordingly. Therefore, it handles well appearance
change in this sequence and continues tracking the target when
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GKT
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the occlusion disappears.

Fig. 14 presents the most challenging scenario in that the
sequence, shaking, has moving targets, variations in illumi-
nation with bright spots and rays, as well as occlusions;
however retains similarity to the face tracking scenarios as
above. Consistent track maintenance is achieved by the MIL
and BPR-L1 trackers only.

In the ninth sequence, singer shown in Fig. 15, the singer
wears white clothes which are similar to the background and
matches the clutter from the light. CTL loses track because
it focuses on the color discrimination that is not evident in
the image. The L1 tracker loses the singer target due to the
frequent template update. The GKT, MIL, OAB, VTD, IVT,
SPT and BPR-LI all track the target; however, the BPR-L1
captures the target size more accurately.



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, XXX 2013

Fig. 11. Tracking results of the OneLeaveShopReenter2cor sequence.

Fig. 12. Tracking results of the girl sequence.

Fig. 16 presents the tenth sequence, pktest02. The multi-car
traffic scene has many objects in the image that are similar
to the tracking target, thus present numerous opportunities
for target switching. It confuses GKT and OAB confused
throughout the sequence and does the same to MIL, TLD
and IVT after a while. Another reason for failure may be
attributed to the corruption of the target appearance from the
occlusion and shadow of trees. The CTL, SPT, L1 and BPR-
L1 successfully tracks the target through the sequence. The
last experiment is on a long sequence (total 2600 frames), doll,
taken by a hand-held camcorder [30] and shown in the Fig. 17.
The doll undergoes scale, out-of-plane rotation, and occlusion.
The VTD, GKT, and MIL lose the target after around 1000,
1400, and 1600 frames. The SPT does not have a consistent
tracking results. The OAB gradually drift away from the target
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and lost the target at the end of the sequence. The IVT lose
the target from frame 2400. Only CTL, L1, TLD, and BPR-L1
can track the target throughout the whole sequence.

B. Quantitative Comparison and Discussion

To quantitatively compare robustness under challenging
conditions, we manually labeled the ground truth of the eleven
sequences. The tracking accuracy is measured by the relative
position errors (in pixels) between the center of the tracking
result and that of the ground truth. Ideally, the position
differences should be around zero. The results are summarized
in Fig. 18.

Two issues are important in the quantitative results. First,
when a tracker loses the target, it is difficult to reacquire
the target and the error grows rapidly. Second, the proposed
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Fig. 13. Tracking results of the Occluded Face sequence.
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Fig. 15. Tracking results of the singerl sequence.

BPR-L1 tracker in general produces low tracking error, though occluded face, frames 620-750).

there are cases where BPR-L1 does not perform the best (e.g. In general, we attributes the excellent performance of BPR-
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Fig. 16. Tracking results of the pktest02 sequence.

Fig. 17.

Tracking results of the doll sequence.

L1 to: (1) the speed up allows more particles to be used
so as to better approximate the posterior probability in the
sequential Bayesian inference, and (2) the occlusion detection
and consequent handling reduces the chances of drifting.
One limitation of our method lies in the holistic appearance
model for tracking targets. The model takes pixel position into
account and may have problems when dealing with non-rigid
objects in which relative pixel positions have changed. In addi-
tion, in some cases the model may suffer from misalignment,
especially when images/templates of large sizes are used.

VII. CONCLUSIONS

We demonstrated an efficient Bounded-Particle Re-sampling
L1 minimization (BPR-L1) tracker with minimum error bound

12

==GKT

MIL
==Q0AB
==CTL
==\/TD
=T
—1

TLD

SPT
==BPR-L1

'GKT

MIL
==Q0AB
==CTL
==\/TD
=—|\/T
— 1

TLD

SPT
==BPR-L1

and occlusion detection. The BPR-L1 tracker employs a two-
stage sample probability scheme, where most samples with
small probabilities from first stage are filtered out without
solving the computationally expensive ¢; minimization. The
occlusion detection coupled with a template update scheme
effectively prevents the occluded target from contaminating
the target template set. Preventing an incorrect update to the
target template set reduces tracking failures. Our proposed
BPR-L1 method is computationally more efficient than the
previous L1 tracker, and demonstrates the effectiveness in
handling a number of challenging sequences such as varia-
tions in illumination, pose, occlusions, and dense targets. We
compared the BPR-L1 tracker with nine other state-of-the-art
trackers including our original L1 tracker on eleven sequences
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Fig. 18. Quantitative comparison of the trackers in terms of position errors (in pixel).

to validate robustness. Overall, BPR-L1 demonstrated very
promising tracking accuracy and ran significantly faster than
the original L1 tracker.
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