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Abstract

Recently, sparse representation has been applied to vi-
sual tracking to find the target with the minimum recon-
struction error from the target template subspace. Though
effective, these L1 trackers require high computational costs
due to numerous calculations for `1 minimization. In addi-
tion, the inherent occlusion insensitivity of the `1 minimiza-
tion has not been fully utilized. In this paper, we propose an
efficient L1 tracker with minimum error bound and occlu-
sion detection which we call Bounded Particle Resampling
(BPR)-L1 tracker. First, the minimum error bound is quickly
calculated from a linear least squares equation, and serves
as a guide for particle resampling in a particle filter frame-
work. Without loss of precision during resampling, most
insignificant samples are removed before solving the com-
putationally expensive `1 minimization function. The BPR
technique enables us to speed up the L1 tracker without sac-
rificing accuracy. Second, we perform occlusion detection
by investigating the trivial coefficients in the `1 minimiza-
tion. These coefficients, by design, contain rich information
about image corruptions including occlusion. Detected oc-
clusions enhance the template updates to effectively reduce
the drifting problem. The proposed method shows good per-
formance as compared with several state-of-the-art trackers
on challenging benchmark sequences.

1. Introduction
Visual tracking is an important topic for applications

such as security and surveillance, vehicle navigation, hu-
man computer interaction, and so on. The challenges in
designing a robust visual tracking algorithm in a dynamic
environment are caused by the presence of noise, occlu-
sion, varying viewpoints, background clutter and illumina-

∗The work was done when Xue Mei was with University of Maryland,
College Park.

tion changes. A thorough review can be found in [25].
Recently, sparse representation [5, 8] has been success-

fully applied to visual tracking [18, 15, 14]. In these meth-
ods, the tracking problem is formulated as finding a sparse
representation of the target candidate using templates. The
advantage of using the sparse representation lies in the ro-
bustness to a wide range of image corruptions, especially to
an occlusion. The results show good performance, however,
at a computational expense of the `1 minimization. Fur-
thermore, the target states are estimated in a particle filter
framework and the computational cost grows proportion-
ally as the number of particle samples increases. The large
computational cost prevents the tracker from being used in a
real time system such as real time surveillance and military
operations. Furthermore, the rich information captured in
approximation coefficients has not been utilized for occlu-
sion analysis. For example, a gradual occlusion may cause
drifting in the template set.

Inspired by the work mentioned above, we propose an
efficient tracking algorithm with minimum error bound and
occlusion detection. Our first contribution is to largely im-
prove the run time efficiency of the L1 tracker by using an
error bound derived from the least squares. Specifically, we
observe that the computationally expensive reconstruction
error in the sparsely constrained `1 minimization is lower-
bounded by the least squares reconstruction error, which
can be calculated efficiently. The reconstruction error ob-
servation motivates us to design a Bounded Particle Resam-
pling (BPR) algorithm, which greatly boosts the speed of
the tracking algorithm without sacrificing resampling pre-
cision. Specifically, the probability of tracking samples is
calculated in two stages. In the first stage, the sample is re-
constructed by simply projecting the sample onto the target
template subspace. The reconstruction is solved through a
linear least squares equation that runs several orders faster
than a typical `1 minimization function. In the second stage,
only dynamically selected samples that have smaller re-
construction errors from previous stage are reconstructed
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through `1 minimization, while most of the samples are fil-
tered out without solving the `1 minimization. By this two
stage reconstruction, the computational cost is greatly re-
duced and the proposed tracker runs much faster than our
previous L1 tracker [18].

Our second contribution is an occlusion detection
method by investigating the reconstruction coefficients. It
is then used to improve the template update procedure.
The `1 minimization based reconstruction used in previous
method [18] is known to be capable for capturing occlusion
information, which has been previously used for face recog-
nition [22]. While this property enables tracking occluded
targets, it also induces risks by introducing the occluded tar-
get information into the template set and potentially causing
track failures. To prevent the wrong information from con-
taminating the template set, we introduce a robust occlusion
detection method. The idea is to first build an occlusion map
from the trivial coefficients, which indicate pixel-wise im-
age contamination in a given candidate. The occlusion map
is then used for occlusion detection and a candidate is not
added to the template set if an occlusion is detected.

For evaluation, the proposed BPR-L1 tracker is tested on
several challenging benchmark sequences involving chal-
lenges such as occlusion and illumination changes. In all
the experiments, our BPR-L1 method shows excellent per-
formance in comparison with previously proposed trackers.

2. Related Work
Due to the extensive literature on visual tracking, we re-

view only typical works and refer interested readers to [25]
for a thorough review. The visual tracking problem can be
formulated in two different categories: generative and dis-
criminative. Generative tracking methods use an appear-
ance model to represent the target observations. Tracking
is formulated as searching the target location that has the
most similar appearance to the model. Examples of gen-
erative tracking methods are eigentracker [3], mean shift
tracker [7], incremental tracker [20], and covariance tracker
[19]. In [20], a tracking method is presented that incremen-
tally learns a low-dimensional subspace representation, and
efficiently adapts to online changes in the target appearance.
To adapt to the target appearance variations due to the illu-
mination changes, pose changes, etc., the appearance model
is often dynamically updated.

Discriminative tracking methods cast the tracking as a
binary classification problem. Tracking is formulated as
finding the target location that can best separate the target
from the background. In [1], a feature vector is constructed
for every pixel in the reference image and an adaptive en-
semble of classifiers is trained to separate pixels that belong
to the object from pixels that belong to the background. In
[6], a confidence map is built by finding the most discrim-
inative RGB color combination in each frame. A hybrid

approach that combines a generative model and a discrimi-
native classifier is used to capture appearance changes and
allow reacquisition of an object after total occlusion [27].
Online multiple instance learning is used in [2] to achieve
robustness to occlusions as well as other image corruptions.
Global mode seeking is used to detect the object after to-
tal occlusion and reinitialize the local tracker [26]. An-
other example [4] uses image fusion to determine the best
appearance model for discrimination and then a generative
approach for dynamic target updates.

Particle filter (PF) has been introduced for visual track-
ing [10] and has been a popular framework due to excel-
lent performance for nonlinear target motion and flexibility
to different object representations. While the use of more
particle samples can improve track robustness, the compu-
tational load required by the particle filter also increases.
Some authors have proposed to speed up the particle filter
framework. In [24], the observation likelihood based on
multiple features is computed in a coarse-to-fine manner so
that the computation can quickly focus on the more promis-
ing regions. In [11], an efficient method is introduced for
using subspace representations in a particle filter by ap-
plying Rao-Blackwellization to integrate out the subspace
coefficients in the state vector. Fewer samples are needed
since part of the posterior over the state vector is analyti-
cally calculated. In [28], it adjusts the number of particle
samples based on the noise variance.

Sparse representation has recently been introduced for
tracking in [18] and later exploited in [15]. In [18], a track-
ing candidate is sparsely represented as a linear combina-
tion of target templates and trivial templates that only have
one nonzero element in each of them. The sparse represen-
tation problem is solved through an `1 minimization prob-
lem with non-negativity constraints to solve the inverse in-
tensity pattern problem during tracking. In [15] the group
sparsity is integrated and very high dimensional image fea-
tures are used for improving tracking robustness. Our work
is inspired by these studies, but we use an `2 error bound
to improve efficiency and introduce an occlusion map for
reliable template updating.

Our work shares philosophies with works where the er-
ror bound is used to guide visual tracking. For example,
in [16] a boosting error bound in a co-training framework is
used to guide the novel tracker construction. However, the
application of using an error bound in a sparse tracker has
not been well explored. Furthermore, our goal is to use the
error bound for speed up without sacrificing accuracy.

3. Efficient L1-Tracker with Bounded Particle
Resampling

In this section we will first review the original L1-
Tracker [18] that combines the sparse representation and



the particle filter framework. Then we will present the least
squares based minimum error bound, which can be more
efficiently computed than the error bound used in the L1-
Tracker. After that, we propose the BPR-L1, using the BPR
procedure to increase efficiency without accuracy loss.

3.1. L1-Tracker with Sparse Representation

Particle filter. The L1-Tracker proposed in [18] is formu-
lated as finding a sparse representation in the template sub-
space. The representation is then used with the particle
filter framework [10] for visual tracking. Specifically, for
frame at time t, we denote xt as the state variable describ-
ing the location and shape of a target. The tracking problem
can be formulated as an estimation of the state probabil-
ity p(xt|z1:t), where z1:t = {z1, z2, · · · , zt} represents the
observations from previous t frames. The tracking proceeds
using a two-stage Bayesian sequential estimation, which re-
cursively updates the filtering distribution as

p(xt|z1:t−1) =
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 , (1)

p(xt|z1:t) ∝ p(zt|xt)p(xt|z1:t−1) , (2)

where p(xt|xt−1) indicates the state transition probability,
and p(zt|xt) gives the observation likelihood of state xt.
Direct calculation of the above distribution is practically in-
tractable. Alternatively, the posterior p(xt|z1:t) is approxi-
mated by a set of N particle samples {xi

t}N
i=1 with impor-

tance weights πi
t. The samples are updated and resampled

at each frame.
In the L1-Tracker, the state variable xt contains six pa-

rameters of the affine transformation. The state transi-
tion of xt are modeled independently by a Gaussian dis-
tribution around the previous state xt−1, and N candidate
samples are generated based on the state transition model
p(xt|xt−1). The observation model p(zt|xt) reflects the
similarity between a target candidate and the target tem-
plates, which is formulated using approximation error in the
sparse representation described as below.
Sparse representation. To model the observation likeli-
hood p(zt|xt), a patch corresponding to state xt is first
cropped from frame zt

1. The patch is then normalized and
reshaped to a 1D vector y, which is used as a target candi-
date.

The sparse representation of y is formulated as a min-
imum error reconstruction through a regularized `1 mini-
mization function with nonnegativity constraints

min
c
‖ Bc− y ‖22 +λ ‖ c ‖1 , s.t. c < 0 , (3)

where B =
[
T, I,−I

]
is composed of target template set

T and trivial template sets I and −I. Each column in T is a
target template generated by reshaping pixels of a candidate

1The frame at time t is treated as the observation zt.

Algorithm 1 Particle filter for L1-Tracker
1: At t = 0, initialize samples xi

0, for i = 1, 2, · · · , N
2: for t = 1 to number of frames do
3: for i = 1 to number of samples do
4: Draw sample xi

t with respect to p(xt|xt−1)
5: Prepare the observation yi

t from xi
t.

6: Calculate the observation probability p(yi
t|xi

t).
7: Resample with respect to p(yi

t|xi
t), the number of

times that xi
t appears in the new set is N ∗p(yi

t|xi
t).

8: end for
9: end for

patch into a column vector; and each column in the trivial
template sets is a unit vector that has only one nonzero el-
ement. c =

[
a>, e>

]>
is composed of target coefficients a

and trivial coefficients e respectively.
Finally, the observation likelihood is derived from the

reconstruction error of y as

p(zt|xt) =
1
Γ

exp{−α ‖ Ta− y ‖2} , (4)

where a is obtained by solving the `1 minimization (3), α is
a constant controlling the shape of the Gaussian kernel, and
Γ is a normalization factor.

For tracking at time t, the candidate with the maximum
observation likelihood is chosen as the tracking result. The
likelihood also serves for sample weights and resampling in
the particle filter. A summary of the particle filter for L1-
Tracker is given in Algorithm 1.

3.2. Minimum Error Bound

In this section, we will show that the reconstruction error
from the target templates in `2 norm is bounded by a min-
imum error that can be calculated much faster than solving
an `1 minimization function.
Least squares error bound. The observation likelihood
defined in (4) builds on the reconstruction error ‖ Ta−y ‖2
measured in the `2 norm. Since a is calculated by the `1
minimization (3), there is a natural lower bound for the re-
construction error

‖ Ta− y ‖2≥‖ Tâ− y ‖2 , (5)

where
â = arg min

b
‖ Tb− y ‖2 (6)

is the linear least approximation of y in the subspace
spanned by T. One can also view â as a degenerated case
of a when λ = 0. Similarly, for the observation likelihood
p(zt|xt), we derive its upper bound q(zt|xt) using the least
squares approximation error

q(zt|xt) =
1
Γ

exp{−α ‖ Tâ− y ‖2} , (7)



where α and Γ are the same as in (4). We immediately have

p(zt|xt) ≤ q(zt|xt) . (8)

Efficiency analysis. The linear system in (6) can be solved
by Cholesky factorization or QR factorization. For dense
matrices, the cost of the Cholesky factorization method
is dn2 + (1/3)n3, while the cost of the QR factorization
method is 2dn2, where d is the image dimension and n is
the number of templates. The QR factorization method is
slower by a factor of at most 2 if d À n, which is the case
for our problem. For small and medium-size problems, the
factor of two does not outweigh the difference in accuracy,
and the QR factorization is the recommended method.

The original L1-Tracker uses the preconditioned conju-
gate gradients (PCG) method [12] to solve the `1 minimiza-
tion function. The PCG algorithm computes the search di-
rection and the run time is determined by the product of the
total number of PCG steps required over all iterations and
the cost of a PCG step. The total number of PCG iterations
required by the truncated Newton interior-point method de-
pends on the value of the regularization parameter λ. In the
experiments, we found that the total number of PCG is a
few hundred. The computationally most expensive opera-
tion for a PCG step is a matrix-vector product which has
O(d(2d + n)) = O(d2 + dn) computing complexity.

From the complexity analysis, we can see the solution to
the least squares problem in (6) is two orders faster than the
`1 solution. For example, if we are using template size of
15×12, then d = 15×12 = 180. The number of templates
is n = 10. The cost of Cholesky factorization method is
dn2 + (1/3)n3 = 180 × 100 + (1/3) × 1000 ≈ 18000.
While the cost of a PCG step is O(d2 + dn) = O(32400),
and there will be a few hundred such steps.

3.3. Bounded Particle Resampling

From the previous section, we showed that the computa-
tion is much more intensive to compute the observation like-
lihood p(zt|xt) than to compute its upper bound q(zt|xt). It
is therefore attractive to use the upper bound for samples
that are not promising enough and only conduct the true
likelihood computations for the promising samples. In ad-
dition, to search for the candidate with the maximum likeli-
hood, we still need the sample observations for resampling.
Fortunately, in many cases only a small portion of the sam-
ples will be preserved after resampling and an efficient al-
gorithm can be designed to avoid computing all observation
likelihoods.

We denote Xt = {x1
t , x2

t , · · · , xN
t } as the sample set at

time t, and denote pi = p(zt|xi
t), qi = q(zt|xi

t) as the obser-
vation likelihood and its corresponding upper bound defined
in previous subsection. At the end of each frame, the sam-
ples are resampled with respect to their observation likeli-
hoods. We have the following observation.

Algorithm 2 Two-stage Bounded Resampling
1: Input: sample set Xt−1 = {xk

t−1}N
k=1

2: Output: sample set Xt = {xk
t }N

k=1

3: /*Stage 1*/
4: for i = 1 to N do
5: Draw sample xi

t from xi
t−1

6: Prepare the sample appearance yi
t from xi

t

7: Solve the linear least squares problem (6) for yi
t

8: Compute qi according to (7)
9: end for

10: Sort samples in descending order according to qi

11: /*Stage 2*/
12: i ← 1, τ1 ← 0
13: while qi ≥ τi and i ≤ N do
14: Solve the `1 minimization problem (3) for yi

t

15: Compute pi according to (4)
16: τi+1 ← τi + pi/(2N − 1)
17: i ← i + 1
18: end while
19: pj ← 0, ∀j ≥ i

20: /*Resampling*/
21: Xt ← Resample {xk

t }N
k=1 with respect to {pk}N

k=1

Observation 1. If the sample appears at least once in the
resampled set, its observation probability must satisfy the
following condition

pi ≥ 1
2N

N∑

j=1

pj . (9)

The observation is straightforward because the number
of samples remains unchanged before and after resampling.
The “2” in the denominator is due to rounding.

Motivated by the observation, we develop a two-stage
bounded resampling algorithm to calculate the probability
of the tracking candidates. The first stage is very straightfor-
ward: we compute the probability bounds qi for all samples
and sort them in descending order. Without loss of gener-
ality, in the following we assume the samples are already
sorted, i.e., q1 ≥ q2 ≥ · · · ≥ qN .

In the second stage, our task is to calculate the observa-
tion probability pi for samples that will survive resampling.
The observation probability can be done efficiently even for
large number of samples by using a dynamically updated
threshold τ to exclude to-be-discarded samples. In particu-
lar, τ is defined according to the following theorem:

Theorem 1. If the ith sample xi appears at least once after
resampling, its likelihood bound qi is no less than a thresh-
old τi defined as

τi =
1

2N − 1

i−1∑

j=1

pj . (10)



Proof. From Observation 1, we have

2Npi ≥
N∑

j=1

pj ≥
i∑

j=1

pj . (11)

Subtract pi on both sides and divide by 2N − 1, we have

pi ≥ 1
2N − 1

i−1∑

j=1

pj = τi . (12)

Using the fact that qi is an upper bound of pi, we have
qi ≥ pi ≥ τi.

From the definition, we see that the thresholds are non-
decreasing, i.e., 0 = τ1 ≤ τ2 ≤ · · · ≤ τN , and there is

τi+1 = τi +
pi

2N − 1
, (13)

which can be used for an efficient threshold update.
With the above thresholds, in the second stage we start

with the first sample that has the largest likelihood bound
q1, and calculate the probability p1 according to (4) and
update the corresponding threshold τ2 according to (13).
Then we continue for samples 2, 3, . . .. For the ith sam-
ple, if the likelihood bound qi ≥ τi, we compute the ob-
servation likelihood pi and update threshold τi+1. Other-
wise if qi < τi, which according to Theorem 1 implies
that xi, xi+1, · · · , xN will be discarded during resampling.
Then, we directly set pi = pi+1 = · · · = pN = 0. The
probabilities p1, p2, · · · , pN is then used for resampling set
X . The proposed two stage bounded resampling is summa-
rized in Algorithm 2.

The above Bounded Particle Resampling (BPR) proce-
dure does not sacrifice resampling precision, which is guar-
anteed by Theorem 1. BPR avoids the expensive computa-
tion on samples with low likelihoods. The amount of time
saved is mainly determined by the dissimilarity between the
tracking foreground and its surrounding background. In-
tuitively, the larger the foreground/background difference,
the more speedup from the BPR procedure. Furthermore,
the BPR framework encourages using more particles with
larger sampling variance in comparison with the previously
proposed L1-Tracker [18]. BPR helps improve tracking ac-
curacy in addition to computational efficiency.
Empirical studies. In Fig. 1, it shows the curves of p, q, and
τ calculated from one frame when 600 particles are used.
After about 100 particle samples, q is becoming smaller
than τ , and the probability p of the rest samples are as-
signed to 0 without calculating the computational expensive
`1 minimization. For this frame, only 20% of the samples
need to solve the `1 minimization, and we achieve about 5
times speed up for this frame.

Fig. 2 shows the run time and the number of particle sam-
ples for which the `1 minimization is performed. We can
see that the run time is proportional to the number of the
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Figure 1. The curves of p, q, and τ . The logarithm is applied to
the data for display purpose.

Figure 2. The run time and number of particle samples for se-
quence OneLeaveShopReenter2cor.

samples and is dominated by the second stage probability
calculation. For most of the frames in the sequence, only
20% of the particle samples calculate the `1 minimization.
From frame 190 to 230, the man comes out of the shop and
the woman is partially occluded. We clearly see that the
number of particles calculating for the `1 minimization in-
creases dramatically when the target is occluded. When the
target is occluded, none of the samples can model the target
appearance well enough so the probabilities are distributed
between the particles. The more probabilities concentrate
on the first few samples, the less particles are needed for
the `1 minimization calculation. When the probabilities are
evenly distributed, more particles are needed, which results
in a longer run time for the frame.

4. Occlusion Detection

The template set needs to be updated to capture the ap-
pearance variations of the target during tracking. In [18],
the tracking result is added to the template set if none of
the template is similar to the tracking result. Therefore,
the tracker is vulnerable to failures when the tracking re-



sult with a large occlusion is added to the template set. To
prevent an improper addition to the template set, we pro-
pose a method to detect the large occlusion in the tracking
result before it is added to the template set.

For occlusion detection, we investigate the responses in
the trivial templates when solving the `1 minimization (3).
The trivial templates are activated when the pixel intensity
can not be approximated well using the target templates.
Therefore, we explore the trivial template coefficients for
the occlusion detection. We convert the 1D trivial coef-
ficient vector to a 2D trivial image by reversing the way
that the target template is vectorized. Each pixel in trivial
image is mapped to the pixel in the same location in the
template image. We threshold the trivial image and obtain
another 2D binary image that we call occlusion map. The
white pixel in the occlusion map indicates that the pixel is
occluded and the black pixel indicates no occlusion. We as-
sume that an occluder is large in size and the intensity is
different enough to be separated from small random noises.
Therefore, the occlusion is a large connected region in the
occlusion map. The occlusion detection is then reduced to
find a white area that is large enough to be classified as an
occlusion. After applying morphological operations to the
occlusion map to remove the small areas and fill the small
hole between the regions, we count the number of pixels in
the largest region. If the area is larger than a pre-defined
threshold, say 30% of the area of the occlusion map, we
conclude that there is an occlusion in the tracking result,
and the template set should not be updated.

Normally when an occlusion is detected, it will not go
away for a certain period of time. For example, when the
target is occluded by an object, and the object is moving
away from the target, the occlusion is becoming smaller be-
fore it goes away. In our occlusion detection method, we
avoid updating the template set for the next 5 frames after
an occlusion is detected.

5. Experiments
We implemented the proposed approach in MATLAB

with the SPAM package2 [17]and evaluated the perfor-
mance on seven publicly available video sequences.3 Our
proposed tracker is compared with seven latest state-of-
the-art trackers named Incremental Visual Tracking (IVT)
[20], Multiple Instance Learning (MIL) [2], Visual Track-
ing Decomposition (VTD) [13], Generalized Kernel Track-
ing (GKT) [21], L1 tracker (L1) [18], Covariance Tensor
Learning (CTL) [23], and Online AdaBoost (OAB) [9]. The

2http://www.di.ens.fr/willow/SPAMS/downloads.html
3Sequences 1–3 were from http://www.cs.toronto.edu/˜dross/ivt/.

Sequences 4–7 were from the PETS 2001 dataset
http://www.cvg.cs.rdg.ac.uk/ PETS2001/, http://groups.inf.ed.ac.uk/vision
/CAVIAR/CAVIARDATA1/, http://vision.stanford.edu/˜birch/headtracker
/seq/, and http://vision.ucsd.edu/˜bbabenko/project miltrack.shtml.

tracking results of the compared methods were obtained by
running the source code or binaries provided by their au-
thors using the same initial positions in the first frame.

5.1. Qualitative Comparison

The first sequence shows a vehicle undergoes drastic il-
lumination changes as it passes beneath a bridge and under
trees. Tracking results on several frames are presented in
Fig. 3 (A). The BPR-L1 tracker, L1 tracker, IVT and CTL
are able to track the target well even though the drastic il-
lumination changes, while the other trackers lose the target
after it goes through the bridge.

The second sequence was captured in an indoor envi-
ronment. Results on several frames are presented in Fig. 3
(B). The BPR-L1 tracker, L1 tracker, IVT, OAB, and MIL
tracks the target faithfully throughout the sequences. The
other trackers fails track the target when there are both pose
and illumination changes.

Results on the third sequence are shown in Fig. 3 (C). It
shows a moving animal doll and presents challenging pose,
lighting, and scale changes. The L1 tracker, IVT, and VTD
eventually fails in frame 736 as a result of a combination of
drastic pose and illumination change. The BPR-L1 tracker
and rest trackers are able to track the target for this long
sequence, though GKT is a little off the target in frames
521, and 546.

In the fourth sequence, a person is walking from right
bottom corner to the left of the image (Fig. 3 (D)). The IVT
fails to track the target from the start. The VTD starts to
show some target drifting around 200 frames, and finally
loses the target. Our tracker and the rest trackers success-
fully track the target.

The fifth sequence is to track a walking woman. In this
video, the background color is similar to the color of the
woman’s trousers, and the man’s shirt and pants have a sim-
ilar color to the woman’s coat. In addition, the woman un-
dergoes partial occlusion. Some result frames are given in
Fig. 3 (E). Only the BPR-L1 tracker and L1 tracker are able
to track the target during the entire sequence. The other
trackers lock on the man when he occludes the woman after
he comes out of the shop.

Results of the sixth sequence are shown in Fig. 3 (F). In
this sequence, we show the robustness of our algorithm in
handling occlusion and large pose change. All the trackers
track the target in the entire sequence except for the MIL
that loses the target in the frame 466.

Results on the seventh sequence are shown in Fig. 3 (G).
Many trackers start drifting from the target when the man’s
face is almost fully occluded by the book. The BPR-L1
tracker handles this very well and continues tracking the
target when the occlusion disappears.



(A) Car4 (23, 185, 210, 271, 306, 599) (B) David Indoor (318, 411, 442, 463, 595, 677)

#0023 #0185 #0210
#0318 #0411 #0442

#0271 #0306 #0599
#0463 #0595 #0677

(C) Sylvester (28, 238, 365, 521, 546, 736) (D) PETS01D1Human1 (1417, 1496, 1562, 1631, 1744, 1821)

#0028 #0238 #0365 #1417 #1496 #1562

#0521 #0546 #0736 #1631 #1744 #1821

(E) OneLeaveShopReenter2cor (6, 193, 205, 244, 325, 467) (F) Girl (30, 107, 247, 332, 439, 466)
#0006 #0193 #0205 #0030 #0107 #0247

#0244 #0325 #0467 #0332 #0439 #0466

(G) Occluded Face 2 (43, 152, 354, 473, 706, 786)

#0043 #0152 #0354 #0473 #0706 #0786

012   GKD MIL OAB CTL VTD IVT L1 Our tracker

Figure 3. Tracking results of different algorithms. Frame numbers are listed after sequence names.

5.2. Quantitative Comparison

To quantitatively compare robustness under challenging
conditions, we manually labeled the ground truth of the
seven sequences. The tracking error evaluation is based on
the relative position errors (in pixels) between the center of
the tracking result and that of the ground truth. Ideally, the
position differences should be around zero.

As shown in Fig. 4, the position difference results of the
BPR-L1 tracker are much smaller than those of the other
trackers. Using the BPR method, the BPR-L1 tracker ac-
counted for occlusion errors and better utilized particle re-

sampling for computational efficiency and track accuracy.

6. Conclusion

We propose an efficient BPR-L1 tracker with minimum
error bound and occlusion detection. We employ a two-
stage sample probability scheme, where most samples with
small probabilities from first stage are filtered out without
solving the computational expensive `1 minimization. Our
occlusion detection coupled with a template update scheme
effectively prevents the tracking result with a heavy occlu-
sion from adding that tracking result to the target template
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Figure 4. Quantitative comparison of the trackers in terms of position errors (in pixel).

set. Preventing an incorrect update to the target template
set reduces track failure. Our proposed BPR-L1 method is
computational more efficient than the previous L1 trackers,
and demonstrates the effectiveness in handling a number of
challenging sequences. We compared the BPR-L1 tracker
with seven other state-of-the-art trackers including the orig-
inal L1 tracker on seven sequences to validate robustness.
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