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A. More Model and Training Details

Our implementation is based on the fimm library'.
We use ViT-B/16 [2] (vit_base_patchl6_224 in timm) and
ViT-S/16 [2] (vit_small_patchl6_224 in timm) as the vi-
sion transformer backbones in the paper. Transformer
weights are restored from the checkpoints released by of-
ficial Google JAX implementation’, which are obtained by
first training on ImageNet-21k [7] and then fine-tuning on
Image-1k [7, 8]. The classifier head consists of a bottle-
neck module (Linear — BatchNormld — RelLU —
Dropout (0.5))and aclass predictor (Linear — ReLU
— Dropout (0.5) — Linear). The domain discrimi-
nator has the same network structure as the class predictor
except having only one output.

During the training procedure, images are first resized to
256 x 256 pixels, randomly flipped horizontally, and then
randomly cropped and resized to 224 x 224 pixels. The only
exception is for VisDA-2017 [6], where center-cropping of
size 224 x 224 is used. During the test procedure, images
are first resized to 256 x 256 pixels and then center-cropped
to 224 x 224 pixels.

To train the model, we adopt mini-batch Stochastic Gra-
dient Descent (SGD) with momentum of 0.9. Learning rate
is scheduled as Ir = Irg * (1 + 1le=3 - 4) =075, where Irq is
initial learning rate, ¢ is training step. The learning rate of
parameters of vision transformer backbone is set to be 1/10
of [r. Complete hyper-parameters used for our experiments
are listed in Tab. 1. Note that the same hyper-parameters are
used for source-only training and baseline methods when-
ever applicable.

B. More Analysis on Multi-layer Perturbation

Figure | provides additional results when adding the
same amount of perturbation to each layer while not using
safe training. As can be seen in the left figure, the best layer
to apply perturbation varies across tasks. Besides, a layer

Uhttps://github.com/rwightman/pytorch-image-
models/blob/master/timm/models/vision_transformer.py
Zhttps://github.com/google-research/vision_transformer

Table 1. Complete list of SSRT hyper-parameters used in the ex-

periments.
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batch_size 64 (32 source images + 32 target images)
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Figure 1. Perturbation at different layer. 'No gradient back-
propagation for b,.

that works for one task may fail on others. To see the im-
portance of allowing gradient back-propagation for b, (see
Sec. 3.3 and Sec. 3.4 in the paper), the right figure shows
that the model collapses when add perturbation to relatively
deep layers while blocking the gradients of b’

Table 5 includes comparison results when adding the
perturbation to raw input or a single layer ({0} or {4} or
{8}) in our proposed SSRT method. As can be seen, per-
turbing raw input performs similarly to perturbing the O-th
transformer block. Besides, perturbing any single layer de-
grades the performance on some adaptations tasks. In con-
trast, multi-layer perturbation combines their merits and ob-
tains the best results.



C. More Analysis on Bi-directional Self-
Refinement

Table 2 provides additional results when blocking gra-
dient back-propagation for different variables. Similar to
the results listed in the paper (see Tab. 7), allowing gradient
back-propagation of the teacher probabilities in KL diver-
gence and b', works better than other variants.

Table 2. Blocking gradient back-propagation for different vari-
ables. Note that p, and p, in the table only refer to the teacher
probability in KL divergence. (Safe Training not applied)

| 8% ps  Ba | CloAr  CloPr  CloRw
w=0 X 1.61 12.71 6.08

81.17 85.00 87.28
83.68 85.69 88.04

w ~ B(0.5) ‘ X ‘ 84.55 87.27 89.49

X X

85.21 87.88 89.58

D. More Analysis on Safe Training

In our method, we adopt a Confidence Filter to remove
noisy supervisions. If it not used (i.e., ¢ = 0), the per-
formance may deteriorate. Table 3 shows that using Safe
Training can avoid significant performance drops, making
the method much safer.

Table 3. Accuracies (%) without Confidence Filter. (T Safe Train-
ing not applied)

Cl-Ar Cl-»Pr Cl-Rw Pr—Ar Pr—Cl Pr—Rw

Baseline-B 80.06 84.12 86.67 79.52 67.03  89.44
SSRT-Bf 5933 8698 89.74 7392 2030  90.59
SSRT-B 84.51 86.98 89.30 8265 6779 91.16

E. Analysis on Model’s Robustness

In our proposed SSRT, we use perturbed target domain
data to refine the model during the training procedure. In
this section, we provide analysis on model’s robustness
against perturbation during the test procedure. For each
testing target domain data, we follow the same way as de-
scribed in the paper to add a random offset to its latent token
sequence, and use the perturbed token sequence to make
prediction. To analyze model’s robustness against pertur-
bation at different layers, we add perturbation to different
transformer block as well as the raw input. The perturbation
magnitude is controlled by a scalar « as used in the paper.
Figure 3 shows results (averaged over 6 random runs) on
Pr — Ar and clp — pnt. As can be seen, our method
is more robust than Baseline. Even when adding a larger
amount of perturbation (o = 0.4) than seen during training,
SSRT incurs less accuracy decrease.

F. Comparison with SSL. methods

Since Unsupervised Domain Adaptation (UDA) is
closely related to Semi-Supervised Learning (SSL), in this
section, we compare our method with two representative
techniques in SSL, i.e., Mixup [11] and VAT [4].

Mixup regularizes the model to predict linearly between
samples. Specifically, let ; and x, be two target domain
data, p1 = h(x1) and po = h(xz) be the correspond-
ing model predictions, Mixup first interpolates between two
samples by

A ~ Beta(ay, ay) ()
' =Ae1+ (1 - Ny @)
p'=2p1+ (1 - A)p2 3)
Its loss function is
Lunixup = Eay zanp, |1(2) — /| S

VAT enforces the model to predict consistently within
the norm-ball neighborhood of each target data x. Its loss
function is

max Dgr, (h(z)||h(x + 7)) 5)

Lyar = Egp,
Irli<e

We use Luixup and Lyat as the Lz in our objective
function. The trade-off parameter 5 is set to be 0.2 for both,
same as used in our method. For Mixup, a is set to be 0.5.
We linearly ramp up [ to its maximum value over 1/4 of all
training steps as used in [ 1,9]. Instead of interpolating prob-
abilities, we interpolate unnormalized logits, as it is shown
to perform slightly better. For VAT, p is set to be 100. Both
two techniques are applied to the raw input images.

Table 4 presents results on three benchmarks using ViT-
base backbone. Detailed numbers can be found in Tables 5-
7. On Office-Home [10] and VisDA-2017 [6], Mixup and
VAT perform better than Baseline-B, and slightly worse
than ours. On DomainNet [5], VAT still works. However,
for Mixup, although we tried different hyper-parameters, it
is still inferior to Baseline-B. Figure 2 shows two adapta-
tions tasks where Mixup fails.

Table 4. Comparisons with SSL methods. X' means averaged
over all 5 tasks with X being the target domain.

Office- VisDA  Domain- clpt inff pntf qdrf relt sktf

Home Net
Baseline-B 81.1 85.2 38.5 50.6 25.6 449 11.6 57.0 415
Mixup-B 83.2 88.2 - - - - - -
VAT-B 84.1 88.5 41.1 548 27.6 483 12.5 584 450
SSRT-B 85.4 88.8 45.2 60.0 282 533 13.7 653 504
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Figure 3. Analysis of model’s robustness. The dashlines indicate true test accuracy on the
target domain data. The bars show decreases of accuracies when adding perturbations to
different layers during the test procedure.

Table 5. Accuracies (%) on DomainNet. In each sub-table, the column-wise means source domain and the row-wise means target domain.
“-S/B” indicates ViT-small/base backbones, respectively.

Sg]]));) .['-J clp inf pnt qdr rel skt Avg. ViT-B clp inf pnt qdr rel skt Avg.|| Baseline-B | clp inf pnt qdr rel skt Avg.
clp - 204 433 152 593 465 369 clp - 272 53.1 13.2 712 533 436 clp - 309 533 163 72.7 554 457
inf 327 - 345 63 47.6 292 30.1 inf 514 - 493 40 663 41.1 424 inf 430 - 408 7.8 564 359 36.8
pnt 464 199 - 8.1 588 429 352 pnt 53.1 256 - 48 700 41.8 39.1 pnt 557 28.6 - 7.4 705 483 42.1
qdr 31.1 6.6 180 - 288 220 213 qdr 305 45 160 - 270 193 195 qdr 255 52 97 - 155 17.1 146
rel 555 237 529 95 - 452 374 rel 58.4 29.0 60.0 6.0 - 458 399 rel 623 325 625 82 - 507 432
skt 55.8 20.1 46.5 150 567 - 388 skt 639 23.8 52.3 144 674 - 444 skt 66.4 30.6 58.0 18.1 70.1 -  48.6
Avg. 443 18.1 39.0 10.8 50.2 37.2 333 Avg. 51.5 22.0 46.1 85 60.4 403 38.1 Avg. 50.6 25.6 449 11.6 57.0 41.5 385

VAT-B [4] clp inf pnt qdr rel skt Avg rzvai:-;?.lt clp inf pnt qdr rel skt Avg. SS{l})’I}‘-B clp inf pnt qdr rel skt Avg.
clp - 331 57.1 19.5 758 59.8 49.0 clp - 327 60.0 19.0 753 59.8 493 clp - 332 59.7 19.6 753 58.7 493
inf 483 - 452 9.8 550 374 392 inf 550 - 540 89 67.8 48.1 46.8 inf 548 - 535 93 67.7 46.1 463
pnt 60.0 309 - 79 71.1 52.6 445 pnt 61.6 286 - 82 713 554 450 pnt 612 290 - 7.1 712 550 44.7
qdr 267 54 92 - 181 183 155 qdr 363 62 16.1 - 321 312 244 qdr 40.8 7.0 132 - 354 31.1 255
rel 68.7 353 650 78 - 56.8 46.7 rel 69.8 35.6 66.1 124 - 592 48.6 rel 69.6 357 657 10.7 - 58.7 48.1
skt 70.2 333 65.0 17.6 722 - 517 skt 703 30.5 62.3 200 732 - 513 skt 69.7 32.1 62.0 19.0 728 - 51.1
Avg. 54.8 27.6 483 12.5 584 450 41.1 Avg. 58.6 26.7 51.7 13.7 63.9 50.8 442 Avg. 59.2 27.4 50.8 13.1 64.5 49.9 442

SS{I:I}LB clp inf pnt qdr rel skt Avg. SS{l;g—B clp inf pnt qdr rel skt Avg. S{%f:,l;? clp inf pnt qdr rel skt Avg.
clp - 31.8 589 17.8 757 59.4 487 clp - 324 59.0 18.6 75.6 59.9 49.1 clp - 338 60.2 19.4 758 59.8 49.8
inf 535 - 505 8.6 67.8 475 456 inf 559 - 548 7.6 685 432 47.0 inf 555 - 540 9.0 682 447 463
pnt 613 292 - 81 713 543 4438 pnt 615 274 - 85 714 546 447 pnt 61.7 285 - 84 714 552 450
qdr 425 7.7 170 - 233 334 248 qdr 336 57 113 - 314 318 227 qdr 425 8.8 242 - 376 336 293
rel 68.7 36.1 655 82 - 576 472 rel 69.6 362 659 69 - 581 473 rel 69.9 37.1 66.0 10.1 - 589 484
skt 70.1 31.8 622 17.7 73.1 - 51.0 skt 69.9 309 623 198 733 - 512 skt 70.6 32.8 622 21.7 732 - 521
Avg. 59.2 27.3 50.8 12.1 622 50.4 43.7 Avg. 58.1 26.5 50.6 12.3 64.0 50.5 43.7 Avg. 60.0 28.2 53.3 13.7 65.3 504 45.2
ViT-S clp inf pnt qdr rel skt Avg.|| Baseline-S | clp inf pnt qdr rel skt Avg SSRT-S clp inf pnt qdr rel skt Avg.
clp - 230 462 119 663 462 38.7 clp - 27.0 49.0 12.8 682 49.1 41.2 clp - 285 531 12.1 69.9 52.1 43.1
inf 429 - 428 38 623 339 37.1 inf 418 - 431 27 63.0 33.0 36.7 inf 475 - 498 1.5 649 39.7 40.7
pnt 452 222 - 35 665 357 34.6 pnt 488 257 - 3.1 67.0 40.8 37.1 pnt 53.0 265 - 44 673 467 39.6
qdr 19.7 33 78 - 146 127 11.6 qdr 21.8 58 96 - 153 152 135 qdr 313 69 13.0 - 244 240 199
rel 50.8 242 542 46 - 373 342 rel 54.6 287 575 3.6 - 413 37.1 rel 60.0 31.2 60.5 46 - 485 41.0
skt 572 195 47.1 139 625 - 400 skt 60.9 262 539 10.6 67.5 - 438 skt 63.8 28.6 57.0 13.7 68.7 - 464
Avg. 43.1 185 39.6 7.5 544 332 327 Avg. 456 227 426 6.5 56.2 359 349 Avg. S51.1 244 467 73 59.0 422 384




Table 6. Accuracies (%) on Office-Home.

Method Ar—»Cl Ar—Pr Ar—»Rw Cl-Ar Cl-Pr Cl-Rw Pr—Ar Pr—»Cl Pr—»Rw Rw—Ar Rw—Cl Rw—Pr Avg.
Baseline-B 66.96 85.74 88.07 80.06 84.12 86.67 79.52 67.03 89.44 83.64 70.15 91.17 81.05
Mixup-B [11] 71.32 86.66 88.82 82.45 84.79 87.58 82.90 71.68 90.77 85.46 74.36 91.37 83.18
VAT-B [4] 71.52 89.39 90.48 86.11 88.53 89.33 84.59 72.23 90.84 86.61 72.83 92.48 84.58
SSRT-B (ours) 75.17 88.98 91.09 85.13 88.29 89.95 85.04 74.23 91.26 85.70 78.58 91.78 85.43
Table 7. Accuracies (%) on VisDA-2017.
Method plane beycl bus car horse knife mcycl  person plant sktbrd train truck Avg.
Baseline-B 98.55 82.59 85.97 57.07 94.93 97.20 94.58 76.68 92.11 96.54 94.31 52.24 85.23
Mixup-B [11] 98.88 86.56 88.64 72.32 98.06 98.07 9591 83.00 94.09 98.07 94.55 50.36 88.21
VAT-B [4] 99.15 87.71 90.85 67.81 98.81 98.17 97.57 76.65 92.88 98.73 96.27 57.37 88.50
SSRT-B (ours) 98.93 87.60 89.10 84.77 98.34 98.70 96.27 81.08 94.86 97.90 94.50 43.13 88.76

G. Results with ViT-small Backbone

ViT-small is a smaller version of ViT-base by halving
the number of Self-Attention Heads and token embedding
dimension of ViT-base. It has fewer parameters (~22M
params) than ResNet-101 (~45M params). We empirically
found that it convergences much slower than ViT-base, so
we double the maximum training iterations. An alternative
is to pretrain on the source data first and then adapted to
the target data. As can be seen from Tab. 5, our proposed
SSRT-S achieves +5.1% higher accuracy than MDD+SCDA
(ResNet-101 backbone) on DomainNet, despite that ViT-
small has fewer parameters than ResNet-101.
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