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Abstract

Recently sparse representation has been applied to vi-
sual tracker by modeling the target appearance using a
sparse approximation over a template set, which leads to
the so-called L1 trackers as it needs to solve an �1 norm
related minimization problem for many times. While these
L1 trackers showed impressive tracking accuracies, they are
very computationally demanding and the speed bottleneck
is the solver to �1 norm minimizations. This paper aims
at developing an L1 tracker that not only runs in real time
but also enjoys better robustness than other L1 trackers. In
our proposed L1 tracker, a new �1 norm related minimiza-
tion model is proposed to improve the tracking accuracy by
adding an �2 norm regularization on the coefficients associ-
ated with the trivial templates. Moreover, based on the ac-
celerated proximal gradient approach, a very fast numeri-
cal solver is developed to solve the resulting �1 norm related
minimization problem with guaranteed quadratic conver-
gence. The great running time efficiency and tracking accu-
racy of the proposed tracker is validated with a comprehen-
sive evaluation involving eight challenging sequences and
five alternative state-of-the-art trackers.

1. Introduction
Visual tracking has been an active research topic in the

computer vision community as it is widely applied in the
automatic object identification, automated surveillance, ve-
hicle navigation and many others. Despite great progresses
in last two decades, due to numerous factors in real life,
many challenging problems still remain when designing a
practical visual tracking system. For example, sophisticated
object shape or complex motion, illumination changes and
occlusions all may cause serious stability issues for a visual
tracker (see a more detailed discussion in [26]).

Recently, sparse representation and compressed sensing
techniques (e.g. [5, 7]) for finding a sparse solution of an
under-determined linear system have drawn a great deal of
attention in both mathematics and many applied fields, in-

cluding visual tracking [15, 16, 11, 14, 24]. Similar to
sparsity-based approach for face recognition developed in
[22], these tracking methods express a target by a sparse
linear combination of the templates in the template space,
i.e., the target is well approximated by the linear combina-
tion of only a few templates. Benefitting from the stable
recovery capability of sparse signal using the �1 norm min-
imization (e.g. [5]), these trackers have demonstrated good
robustness in various tracking environments.

In the L1 tracker first proposed by [15], hundreds of �1
norm related minimization problems need to be solved for
each frame during the tracking process. The solver for the
�1 norm minimizations used in [15] is based on the interior
point method which turns out to be too slow for tracking.
A minimal error bounding strategy is introduced [16] to re-
duce the number of particles, equal to the number of the
�1 norm minimizations for solving. A speed up by four to
five times is reported in [16], but it is still far away from
being real time. An efficient solver for the �1 norm related
problems has been the key to use the L1 tracker in practice.

Moreover, in the existing L1 tracker, trivial templates are
included in the template dictionary such that its sparse linear
combination will present the occlusions and image noise in
the target. However, as we empirically observed, the sparse
linear combination of the trivial templates sometimes in-
clude parts of the object in the target, which will result in a
loss of tracking accuracy in some sequences.

Built upon the same framework of the L1 tracker [15,
16], this paper aims at developing a more robust L1 tracker
which runs in real time. There are two main contribu-
tions in the proposed approach. One is the introduction of
a new �1 norm related minimization model which empiri-
cally showed improvements on the tracking accuracy over
the model used in [15]. The other more significant contribu-
tion is the introduction of a very fast numerical method to
solve the resulting �1 norm minimization problems which
leads to a real time L1 tracker. It is noted that the �1 min-
imization problem shown in [15] is just a special case of
our �1 minimization problem. Thus, the proposed numeri-
cal method can also be applied to the original L1 tracker to



make it a real-time tracker.

2. Related Work
Among many approaches for real world visual track-

ing problem, discriminative tracking and generative track-
ing are two different categories with different formulations.
Tracking problem is formulated as a binary classification
problem in discriminative tracking methods. Discrimina-
tive trackers locate the object region by finding the best way
to separate object from background; see e.g. [1, 2, 21, 27].
In [1], a feature vector is constructed for every pixel in the
reference image and an adaptive ensemble of classifiers is
trained to separate pixels that belong to the object from the
ones in the background. Online multiple instance learning
is used in [2] to achieve robustness to occlusions and other
image corruptions. Sparse Bayesian learning is used in [21].
Global mode seeking is used in [27] to detect the object af-
ter total occlusion and reinitialize the local tracker.

Generative tracking method is based on the appearance
model of target object. Tracking is done via searching target
location with best matching score by some metric; see e.g.
eigentracker [3], mean shift tracker [6], incremental tracker
[18] and covariance tracker [17]. To adapt to pose and illu-
mination changes of the object, appearance model is often
dynamically updated during the tracking.

Sparse representation have been applied to tracking
problem in [15], and later exploited in [14, 13]. In [15],
a tracking candidate is sparsely represented by target tem-
plates and trivial templates. In [14], group sparsity is inte-
grated and very high dimensional image features are used
for improving tracking robustness. In these approaches, the
sparse representation is obtained via solving a �1-norm re-
lated minimization problem [15] or �0-norm related mini-
mization in [14, 13]. It is well known that �0-norm re-
lated minimization is an NP-hard problem. The large-scale
�1-norm related minimization is also a challenging problem
due to the non-differentiability of �1 norm. The numerical
methods for solving �1-norm related minimization in [15] is
based on the interior point method [10], which is very slow
when solving large-scale �1-norm minimizations.

In recent years, there have been great progresses on fast
numerical methods for solving large-scale �1-norm related
minimization problems arising in image science, such as
Linearized Bregman iteration [4], Split Bregman method
[8] etc. Meanwhile, Yang et al. [25] has done a comprehen-
sive study of the �1 norm related minimization on robust
face recognition. Among all these methods, one promis-
ing approach is the so-called accelerated proximal gradi-
ent (APG) method introduced by [20] for minimizing the
summation of one smooth function and one non-differential
function. The APG method is used in [19] to solve a uncon-
strained �1 norm related problem related to image restora-
tion.

3. Introduction to L1 Tracker
Our tracker is closely related to the L1 tracker proposed

by Mei and Ling [15]. The main differences lie in a
different minimization model and a much faster numerical
solver for the resulting �1 norm minimization problems.
We first give a brief review on the L1 tracker within the
particle filter framework proposed in [16, 15].

Particle Filter: The particle filter provides an estimate of
posterior distribution of random variables related to Markov
chain. In visual tracking, it gives an important tool for es-
timating the target of next frame without knowing the con-
crete observation probability. It consists of two steps: pre-
diction and update. Specially, at the frame t, denote xt

which describes the location and the shape of the target,
y1:t−1 = {y1, y2, · · · , yt−1} denotes the observation of the
target from the first frame to the frame t − 1. Particle filter
proceeds two steps with following two probabilities:

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (1)

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
. (2)

The optimal state for the frame t is obtained according
to the maximal approximate posterior probability: x∗t =
argmaxx p(x|y1:t).

The posterior probability (2) is approximated by using fi-
nite samples St = {x1t , x2

t , · · · , xNt } with different weights
W = {w1

t ,w2
t , · · · ,wN

t } where N is the number of sam-
ples. The samples are generated by sequential importance
distribution Π(xt|y1:t, x1:t−1) and weights are updated by:

wi
t ∝ wi

t−1

p(yt|xi
t)p(xit|xi

t−1)

Π(xt|y1:t, x1:t−1)
. (3)

In the case of Π(xt|y1:t, x1:t−1) = p(xt|xt−1), the
equation (3) has a simple form wi

t ∝ wi
t−1p(yt|xi

t). Then,
the weights of some particles maybe keep increasing and
fall into the degeneracy case. To avoid such a case, in each
step, samples are re-sampled to generate new sample set
with equal weights according to their weights distribution.

Sparse Representation: The sparse representation model
aims at calculating the observation likelihood for sample
state xt, i.e. p(zt|xt). At the frame t, given the target tem-
plate set Tt = [t1t , t2t , · · · , tnt ], let St = {x1

t , x2t , · · · , xNt }
denote the sampled states and let Ot = {y1

t , y2t , · · · , yNt }
denote the corresponding candidate target patch in target
template space. The sparse representation model is then:

yi
t = TtaiT + Iai

I , ∀yi
t ∈ Ot, (4)

where I is the trivial template set (identity matrix) and ait =
[ai

T ; aiI ] is sparse. Additionally, nonnegative constraints are



imposed on ai
T for the robustness of the L1 tracker [15].

Consequently, for each candidate target patch yi
t, the sparse

representation of yit can be found via solving the following
�1-norm related minimization with nonnegative constraints:

min
a

1

2
‖yit −Aa‖22 + λ‖a‖1, a � 0, (5)

where A = [Tt, I,−I].
Finally, the observation likelihood of state xi

t is given as

p(zt|xi
t) =

1

Γ
exp{−α‖yit − TtciT ‖22}, (6)

where α is a constant controlling the shape of the Gaussian
kernel, Γ is a normal factor and ciT is the minimizer of (5)
restricted to Tt. Then, the optimal state x∗

t of frame t is
obtained by

x∗
t = argmax

xit∈St

p(zt|xi
t). (7)

In addition, a template update scheme is adopted in [15] to
overcome pose and illumination changes.

Minimal Error Bound: In [15], the �1-norm related mini-
mization problem (5) is solved by the interior point method
which is very slow. A minimal error bounding method is
then proposed in [16] to reduce the number of needed �1
minimizations. Actually, their method is based on the fol-
lowing observation:

‖Tta − y‖22 ≥ ‖Ttâ − y‖22, ∀a ∈ R
N , (8)

where
â = argmin

a
‖Tta − y‖22. (9)

Consequently, for any samples xi
t, its observation likelihood

has the following upper bound:

p(zt|xi
t) ≤

1

Γ
exp{−α‖Ttâ − yi

t‖22} � q(zt|xi
t), (10)

where q(yit|xi
t) is the probability upper bound for state xit. It

is seen that if q(zt|xt) < 1
2N

i−1∑
j=1

p(zt|xj
t ), then the sample

xit will not appear in the resample set. In other words, xi
t

can be discarded without being processed. Thus, a two-
stage resample method is proposed in [16] to significantly
reduce the number of samples needed in tracking.

4. Real Time L1 Tracker
Even though the minimal error bound [16] was proposed

to reduce the computation load for L1 tracker, there are still
many �1-norm related minimizations for solving during the
tracking process, For example, in the sequence car with 620
frames, around 80,000 �1-norm related minimizations (5)
needs to be solved with minimal error bound resampling

scheme in [16]. Therefore, the speed bottleneck in the L1
tracker is how to solve the �1-norm related minimization (5)
much faster, in the scale of hundreds of times.

Also, as seen in the model (5), the trivial templates are
included in the template dictionary such that its sparse linear
combination will represent the occlusions and image noise
in the target. However, as we observed in the experiments,
the sparse linear combination will sometimes include parts
of the object in the target which may lead to a loss of track-
ing accuracy in some sequences.

In this section, we first proposed a modified version of
the minimization problem (5) such that the sparse linear
combination of trivial templates can represent the occlu-
sions and image noise more accurately. Then, based on the
accelerated proximal gradient approach [20], we proposed
a fast numerical method for solving the resulting �1 norm
related minimization problem such that the tracker runs in
real time. It is noticed that the developed method is also
applicable to original minimization problem in (5).

4.1. A modified �1 norm related minimization model

There are two types of templates in the template dic-
tionary used by (5): target templates and trivial templates.
The target templates are updated dynamically for represent-
ing target objects during the tracking process. The trivial
templates (identity matrix I) is for representing occlusions,
background and noise. However, since parts of objects may
also be represented by the trivial templates, the region de-
tected by the original tracker sometimes does not fit the tar-
get very accurately.

We take a modified version of (5) for improving track-
ing accuracy. The new model is based on the following
observation. When there are no occlusions, the target in
the next frame should be well approximated by a sparse
linear combination of target templates with a small resid-
ual. Thus, the energy of the coefficients in a associate
with trivial templates, named trivial coefficients, should be
small. On the other hand, when there exist noticeable occlu-
sions, the target in the next frame cannot be well approxi-
mation by any sparse linear combination of target templates,
the large residual (corresponding to occlusions, background
and noise in an ideal situation) will be compensated by the
part from the trivial templates, which leads to a large energy
of the trivial coefficients. The minimization (5) is obviously
not optimal since it does not differentiate these two cases.

In other words, to optimize the usage of the trivial tem-
plates in the tracking, we need to adaptively control the en-
ergy of the trivial coefficients. That is, when occlusions
are negligible, the energy associated with trivial templates
should be small. When there are noticeable occlusions, the
energy should be allowed to be large. This motivation leads
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Figure 1. Illustration of the L1 tracker on the sequence lemming
using the model (5) and the L1 tracker using the proposed model
(11). The first and the second row: results using (5) and using
(11) respectively. Last row: the energy ratio ‖aI‖2/‖a‖2. The left
graph is from (5) and the right is from (11).

to the following minimization model for L1 tracker

min
a

1

2
‖y−A′a‖22+λ‖a‖1+μt

2
‖aI‖22, s.t. aT � 0, (11)

where A′ = [Tt, I], a = [aT ; aI ] are the coefficients associ-
ated with target templates and trivial templates respectively,
and the parameter μt is a parameter to control the energy
in trivial templates. In our implementation, the value of μt

for each state is automatically adjusted using the occlusion
detection method [16]. That is, if occlusions are detected,
μt = 0; otherwise μt is set as some pre-defined constant.

The benefit of the additional �2 norm regularization term
‖aI‖22 is illustrated in Fig. 1. In Fig. 1, about 30 percent
of object energy is contained in trivial templates from min-
imization (5). In other words, trivial templates can not dis-
tinguish the object and background. On the other hand, we
can see the trivial templates coefficients from minimization
(11) are small and lead to better tracking results. At last, we
note that the original minimization (5) is a special case of
the minimization (11) by setting μt = 0.

4.2. Fast numerical method for solving (11)

The proposed method for solving the minimization
problem (11) is based on the accelerated proximal gradient
(APG) approach [20].

APG approach. The APG method is originally designed
for solving the following unconstrained minimization:

minF (a) +G(a), (12)

where F (a) is a differentiable convex function with Lips-

chitz continuous gradient1 and G(a) is a non-smooth but
convex function. The outline of the APG method is given
in Algorithm 1. The efficiency of the APG method is justi-
fied by its quadratic convergence; see Theorem 4.1. How-
ever, we emphasize here that the APG method is fast only
for particular type of function G. During each iteration of
Algorithm 1, we need to solve a minimization in Step 2.
So, the quadratic convergence of APG is materialized only
when the sub-problem in Step 2 has an analytic solution.

Theorem 4.1 ([20]) Let {αk} is the sequence generated by
Algorithm 1. Then within K = O(

√
L/ε) iterations, {αk}

achieves ε-optimality such that ‖αK − α∗‖ < ε, where α∗

is one minimizer of (12).

Algorithm 1 the generic APG approach in [20]

(i) Set α0 = α−1 = 0 ∈ R
N and set t0 = t−1 = 1.

(ii) For k = 0, 1, . . ., iterate until convergence⎧⎪⎪⎨
⎪⎪⎩

βk+1 := αk + tk−1−1
tk

(αk − αk−1);

αk+1 := argmin
a

L
2 ‖a − βk+1 +

∇F (βk+1)
L ‖22 +G(a);

tk+1 :=
1+

√
1+4t2k
2 .

(13)

Reformulation of (11) for applying APG method. As
we see, the original APG method is designed for uncon-
strained minimization problem which can not be directly
applied to (11). Thus, we need to convert the constrained
minimization model into an unconstrained problem. Let
1 ∈ R

N denote the vector with all entries are equal to 1
and let 1R

N
+
(a) denote the indicator function defined by

1RN
+
(a) =

{
0, a � 0;
+∞, otherwise. (14)

It is easy to see that the minimization (11) is equivalent to
the following minimization problem:

argmin
a

1

2
‖y−A′a‖22+λ1�

T aT+‖aI‖1+μt

2
‖aI‖22+1Rn

+
(aT ).

(15)
Then, the APG method can be applied to (15) with

F (a) =
1

2
‖y −A′a‖22 + λ1�T aT +

μt

2
‖aI‖22,

G(a) = ‖aI‖1 + 1R
n
+
(aT ).

(16)

All steps in Algorithm 1 are trivial except Step 2, in which
we need to solve an optimization problem:

αk+1 = argmin
a

L

2
‖a − βk+1 +

∇F (βk+1)

L
‖22 +G(a).

(17)
1the gradient of F is Lipschitz continuous if ‖∇F (x) − ∇F (y)‖ ≤

L‖x − y‖, ∀x, y ∈ R
N , for some constant L.



For general function G, it cannot be directly solved. How-
ever, in our setting, we have the analytic solution for (17);
see Proposition 4.2. The algorithm for solving �1-norm re-
lated minimization (11) is given in Algorithm 2.

Proposition 4.2 If F (a) and G(a) are defined in (16), then
the minimization problem (17) has the following solution:

αk+1|T = max(0, gk+1|T )
αk+1|I = Tλ/L(gk+1|I).

(18)

where gk+1 = βk+1 − ∇F (βk+1)
L and T is the soft-

thresholding operator: Tλ(x) = sign(x)max(|x| − λ, 0).

Proof See the appendix A.

Algorithm 2 Real Time Numerical algorithm for solving
the minimization (11)

(i) Set α0 = α−1 = 0 ∈ R
N and set t0 = t−1 = 1.

(ii) For k = 0, 1, . . ., iterate until convergence⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

βk+1 := αk + tk−1−1
tk

(αk − αk−1);

gk+1|T := βk+1|T − (A′�(A′βk+1 − y))|T /L− λ1T ;
gk+1|I := βk+1|I − (A′�(Aβk+1 − y))|I/L

−μβk+1|I/L;
αk+1|T := max(0, gk+1|T );
αk+1|I := Tλ/L(gk+1|I);
tk+1 := (1 +

√
1 + 4t2k)/2.

Tight Lipschitz constant L estimation. There is only
one parameter, the Lipschitz constant L of ∇F , is involved
in Algorithm 2. This Lipschitz constant L plays a crucial
role in the above algorithm. Algorithm 2 with an wrong L
will either diverges or converges very slowly. Next, we give
a tight upper bound of L for F defined in (16) such that L
is automatically set with optimal performance; see Proposi-
tion 4.3. The detailed description of the proposed real time
L1 tracker, called APG-L1 tracker, is given in algorithm 3.

Proposition 4.3 Let F denote the function defined in (16)
with A′ = [T, I], where T is template set and I is the iden-
tity matrix. The upper bound of the Lipschitz constant L for
∇F is given as follows.

L ≤ λ2
max + μt + 1, (19)

where λmax is the largest singular value of T .

Proof See Appendix B.

5. Experiments
Through the experiments, APG algorithm is imple-

mented with Matlab, μt = 5 in (11) when the occlusion
is not detected and 0 otherwise, and λ = 10−2, T = 8 in
Algorithm 2.

Algorithm 3 APG-L1 Tracker
1: Input:
2: Current frame Ft;
3: Sample Set St−1 = {xit−1}Ni=1;
4: Template set T = {ti}ni=1.
5: for i = 1 to N do
6: Drawing the new sample xit from xi

t−1;
7: Preparing the candidate patch yi

t in template space;
8: Solving the least square problem (9);
9: Computing qi according to (10);

10: end for
11: Sorting the samples in descent order according to q;
12: Setting i = 1 and τ = 0.
13: while i < N and qi ≥ τ do
14: Solving the minimization (11) via Algorithm 2;
15: Computing the observation likelihood pi in (6);
16: τ = τ + 1

2N pi;
17: i = i+ 1;
18: end while
19: Set pj = 0, ∀j ≥ i.
20: Output:
21: Finding the x∗

t according to (7);
22: Detecting the occlusion [16] and update μ in (11);
23: Updating the template set Tt−1 [16];
24: Updating the sample set St−1 with p.

5.1. Comparison with the L1 Tracker [16]

The computation efficiency and tracking accuracy of the
proposed APG-L1 tracker is first compared to that of the
BPR-L1 tracker [16] on ten sequences. The average run-
ning time of the proposed APG-based solver v.s. the inte-
rior point method used [16] is about 1 : 150. As a result, the
average running time of the APG-L1 tracker v.s. the BPR-
L1 tracker is around 1:20, with 600 particles. The APG-L1
tracker achieves about average 26 frames per second with
600 particles on a PC with Intel i7-2600 CPU (3.4GHz).
The output bounding boxes of the target from the two tack-
ers are similar in many sequences, while the results from
APG-L1 are more accurate on some challenging sequences.

#277 #741 #676 #770

Figure 2. Demonstration of the improvement of APG-L1 tracker
(red) over BPR-L1 (blue) on tracking accuracy.

5.2. Qualitative Comparison with Other Methods

The performance of the proposed APG-L1 tracker is
also evaluated on eight publicly available video sequences
and is compared with five latest state-of-the-art trackers



named Incremental Visual Tracking (IVT) [18], Multiple
Instance Learning (MIL) [2], Visual Tracking Decomposi-
tion (VTD) [12], Incremental Covariance Tensor Learning
(ICTL) [23], and Online AdaBoost (OAB) [9]. The track-
ing results of the compared methods were obtained using
the codes provided by the authors with the default parame-
ters and using the same initial positions in the first frame.

The sequence jump was captured outdoors. The target
was jumping and the motion blurs are very severe. Results
on several frames are presented in Fig. 3 (a). The APG-
L1 tracker, IVT, OAB, and MIL tracks the target faithfully
throughout the sequences. The other trackers fails track the
target when there are abrupt motion and severe motion blur.

The sequence car shows a vehicle undergoes drastic il-
lumination changes as it passes beneath a bridge and un-
der trees. Tracking results on several frames are shown in
Fig. 3 (b). The APG-L1 tracker and IVT can track the tar-
get well despite the drastic illumination changes, while the
other trackers lose the target after it goes through the bridge.

Results of the sequence singer are shown in Fig. 3 (c).
In this sequence, we show the robustness of our algorithm
in severe illumination changes and large scale variations.
Only our APG-L1 tracker and the VTD tracker can track
the target throughout the sequence.

In the sequence woman (Fig. 3 (d)), only the APG-L1
tracker is able to track the target during the entire sequence.
The other trackers drift to the man when he occludes the
target due to his similar appearance as the target.

In the sequence pole, a person is walking away from
the camera and is occluded by the pole for a short time
(Fig. 3 (e)). The IVT loses the target from the start and
the VTD starts to drift off the target at frame 274 and finally
loses the target. All the rest successfully track the target but
our APG-L1 tracker recovers the target scale better.

Results on the sequence sylv are shown in Fig. 3 (f),
where a moving animal doll is undergoing challenging pose
variations, lighting changes and scale variations. The IVT,
and VTD eventually fails at frame 605 as a result of drastic
pose and illumination changes. The rest trackers are able
to track the target for this long sequence while our APG-L1
tracker performs with higher accuracy.

Results of the sequence deer are shown in Fig. 3 (g). In
this sequence, we show the robustness of our algorithm in
background clutters and the fast motion. Only our APG-L1
tracker and VTD can track the target through the sequence.

Fig. 3 (h) shows the results on the sequence face. Many
trackers start drifting from the target when the man’s face
is severely occluded by the book. The APG-L1 tracker and
IVT handle this very well and continue tracking the target
when the occlusion disappears.

MIL OAB ICTL VTD IVT ours
jump 0.030 0.030 0.198 0.221 0.020 0.025
car 0.749 0.786 0.326 0.313 0.049 0.048

singer 0.299 0.466 0.503 0.056 0.155 0.069
woman 0.361 0.179 0.323 0.339 0.148 0.032

pole 0.007 0.010 0.008 0.049 0.572 0.003
sylv 0.069 0.058 0.096 0.203 0.197 0.032
deer 0.022 0.060 0.306 0.027 0.110 0.017
face 0.120 0.144 0.137 0.209 0.053 0.062
Ave. 0.207 0.217 0.237 0.177 0.163 0.036

Table 1. The average tracking errors. The error is measured using
the Euclidian distance of two center points, which has been nor-
malized by the size of the target from the ground truth. The last
row is the average error for each tracker over all the test sequences.

5.3. Quantitative Comparison with other methods

To quantitatively evaluate the robustness of the APG-L1
tracker under challenging conditions, we manually anno-
tated the target’s bounding box in each frame for all test
sequences. The tracking error evaluation is based on the
relative position errors (in pixels) between the center of the
tracking result and that of the annotation. As shown in Fig.4
and Table 1, the APG-L1 tracker achieves comparable to the
best performer on the sequence jump, singer and face to the
best-performed trackers, and on all the other sequences it
performs best.

6. Conclusion
In summary, based on the framework of the L1 tracker

[15, 16], we developed a real time L1 visual tracker with
improved tracking accuracy. The accuracy improvement
is achieved via a new minimization model for finding the
sparse representation of the target and the real time perfor-
mance is achieved by a new APG based numerical solver for
the resulting �1 norm minimization problems. The experi-
ments also validated the high computational efficiency and
better tracking accuracy of the proposed APG-L1 tracker.
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Appendix A: Proof of Proposition 4.2.
The optimization problem (17) is expressed as follows,

min
a

L

2
‖a − gk+1‖22 + 1

R
+
n
(aT ) + ‖aI‖1. (20)

Since the variables of a are independent, (20) is the same as

min
aT

L

2
‖aT − gk+1|T ‖22 + 1

R
+
n
(aT ),

min
aI

L

2
‖aI − gk+1|I‖22 + λ‖aI‖1.

(21)

It is easy to see the solution of first minimization in
(21) is the projection of gk+1|T to the R

+
n space, i.e.

max(0, gk+1|T ). For the second minimization in (21), all
the variables are independent. So, we only need to solve the
following minimization :

min
x

L

2
‖y − x‖22 + λ‖x‖1 � f(x), (22)

where x, y ∈ R. The minimizer of (22) can be expressed as
a soft thresholding operation:

x = Tλ/L(y) = sgn(y) ∗max(|y| − L, 0). (23)

Thus, we have aI = Tλ/L(gk+1|I) as the minimizer of (21).
Appendix B: Proof of Proposition 4.3.
From (16), we have

∇2F (x) =

(
T�T T�

T (1 + μ)I

)
(24)

Assume T = UΣV � by singular value decomposition,
where U and V are orthonormal matrices, Σ ∈ R

m×N (m <
N) with Σii = λi and λ1 ≥ λ2 ≥ . . . ≥ λm ≥
0. It is easy to know ∇2F (x) is similar to M �(

Σ�Σ Σ�

Σ (1 + μ)I

)
. So λFmax = λMmax ≤ λ2

max +

1 + μ, where λFmax, λMmax and λmax are the largest sin-
gular values of ∇2F (x), M and T respectively.


