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Abstract

In this paper we propose using bin-ratio information,
which is collected from the ratios between bin values of
histograms, for scene and category classification. To use
such information, a new histogram dissimilarity, bin-ratio
dissimilarity (BRD), is designed. We show that BRD pro-
vides several attractive advantages for category and scene
classification tasks: First, BRD is robust to cluttering, par-
tial occlusion and histogram normalization; Second, BRD
captures rich co-occurrence information while enjoying a
linear computational complexity; Third, BRD can be eas-
ily combined with other dissimilarity measures, such as L
and X2, to gather complimentary information. We apply
the proposed methods to category and scene classification
tasks in the bag-of-words framework. The experiments are
conducted on several widely tested datasets including PAS-
CAL 2005, PASCAL 2008, Oxford flowers, and Scene-15
dataset. In all experiments, the proposed methods demon-
strate excellent performance in comparison with previously
reported solutions.

1. Introduction

Histogram-based representation is very popular in many
computer vision tasks since it captures rich information that
leads to powerful discriminability. In particular, it is widely
used in category and scene classification, such as in the bag-
of-words models [8, 9, 21, 32, 37, 34]. In these models, an
image is represented by the histogram (frequency) of vector
quantized visual words. These histograms are then com-
bined with classifiers (e.g., support vector machines) for
classification. Many studies have been focusing on different
aspects of the framework, including the generation of visual
dictionary, quantization of visual patches into visual words,
efficient and effective inference on the histogram represen-
tations, etc. In this paper, we focus on the study of dissimi-
larity measures between such histogram representations.

There are two major motivations for our study: partial
matching and co-occurrence information. Partial matching
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Figure 1. An example of the partial matching and histogram normaliza-
tion problem. (a), (b) and (c) show three histograms before normalization.
Histograms in (a), (b) and (c) are [1 3 14 1 0], [1 3 14 1 25] and [10 10
10 10 10] respectively. (d), (e) and (f) show the corresponding normalized
histograms. (g) shows the L1 distances between (a) and (b), (a) and (c)
before normalization. (h) shows dissimilarities between (d) and (e), (d)
and (f) calculated by several different methods, where “HI”, “EMD”, and
“BRD” indicates “Histogram Intersection”, “Earth Mover’s Distance”, and
the proposed “bin-ratio dissimilarity” respectively.

is an important issue in category and scene classification,
because images often contain a large amount of clutters that
are irrelevant to the object-of-interest. Such clutter infor-
mation unavoidably brings noises into histogram represen-
tations and causes troubles for inferences. A toy example
is shown in Figure 1 where (a) and (b) represent histograms
of images from the same category. While bins 1 to 4 in
(a) and (b) are exactly the same, bin (5) is very different
that simulates large background clutters in the image where
(b) is computed. Although it is known that some histogram
comparison methods (e.g. Ly, Histogram Intersection [31],
Earth Mover’s distance (EMD) [27]) are robust to partial
matching, most of them meet problems when histograms
are normalized. For example, in Figure 1 (h), these meth-
ods treat (d) and (f) as more similar than (d) and (e).

In histogram-based representation, co-occurrence cap-
tures the correlation information between pairs of histogram
bins (i.e., joint frequency of visual words in the bag-of-
words model). Many existing histogram measures im-
plicitly assume independent distribution of different visual
words, however, such assumption is often violated in the
real world. For example, a word describes “eye” and a



word describes “mouth” usually appear together for face
images. This observation has triggered research efforts
[30,2,28,19,35, 1, 17, 14, etc.] that take into account joint
word distributions for improving final inference. Different
than previous work, in this paper, we use the co-occurrence
information which directly comes from histogram (i.e. not
from spatial space), for improving dissimilarity measures
between histograms.

To address the above two issues, we propose using bin-
ratio information for category and scene classification. Bin-
ratios are defined as the ratios between bin values of his-
tograms. Specifically, given a n-bin histogram h € R"
(e.g., a word frequency used in the bag-of-words model),
we define its ratio matrix as H = (h(j)/h(i)) € R"*™.
The ratios defined this way are robust to normalization and
cluttering as well as capture co-occurrence information be-
tween all pairs of bins. Then, given two histograms, we
define their bin-ratio dissimilarity (BRD) as the sum of
squares of normalized differences over all matrix elements.
As shown in Figure 1(h), the new dissimilarity handles si-
multaneously partial matching and normalization problems.
Furthermore, we show that the bin-ratio dissimilarity has a
linear instead of quadratic computational complexity. Fi-
nally, the bin-ratio dissimilarity is combined with other dis-
tance measures (e.g., L, and x?) for category and scene
classification tasks. Our experiments are conducted on sev-
eral widely tested datasets including PASCAL 2005, PAS-
CAL 2008, Oxford flowers, and Scene-15. In all experi-
ments, our methods demonstrate excellent performance in
comparison with previously reported solutions.

In summary, our main contribution lies in using the
bin-ratio information for category and scene classification.
Specifically, we introduce bin-ratio dissimilarity that has
the following advantages: First, it is robust to background
clutter and histogram normalization; Second, it captures co-
occurrence information while keeps an linear computational
complexity; Third, the method is flexible and can be easily
combined with different distances that usually provide com-
plimentary information. Furthermore, the proposed meth-
ods have the potential to be used for a wide range of tasks,
since bin-ratio dissimilarity is general to all histogram rep-
resentations.

The rest of the paper is organized as follows. §2 reviews
the related work. §3 presents the proposed BRD measure
and how it is combined with other methods for category
and scene classification. §4 experimentally compares ra-
tio distance against other methods on several widely tested
datasets. Finally, §5 concludes the paper.

2. Related Work

Category and scene classification is a very active area
in recent years and has attracted large amount of research
efforts [25]. Our work is closely related to the histogram-

based representations, especially to those under the bag-of-
words framework [8, 9, 21, 32, 37, 34, etc.]. In particular,
our work is directly compared with previous work where
different histogram dissimilarity schemes are used [ 1, 21,

, 37,19, 22,23, 33].

Due to the increasing popularity of histogram based de-
scriptors, reliable and efficient histogram comparisons be-
come an important research topic. Aside from the classic
“bin-to-bin” distances (e.g., Ly, Lo, X2), “cross-bin” dis-
tances [27, 18, 12, etc.] have been recently drawing atten-
tions by many researchers. These distances allow cross bin
comparison between two histograms to gain robustness to
histogram distortions. In the following, we review some
popular bin-to-bin and cross-bin distances that are widely
used in visual category recognition, as these distances are
most related to our study.

The most simple form of bin-to-bin distance is the
Minkowski-form distance, including L; and L, distances.
Recently, the Histogram Intersection introduced by Swain
and Ballard [31] has shown good performance and effi-
ciency in visual category recognition [15, 20, 36]. The x?
distance [26] has been widely used in visual category recog-
nition [8, 21,22, 32, 37], because of its simplicity and good
performance. Although these widely used bin-to-bin dis-
tances have achieved good performances, they can not han-
dle partial matching with normalized histograms, for the
normalization will greatly change the value difference be-
tween corresponding bins, as shown in Fig. 1. Compared
with these bin-to-bin distances, the proposed bin-ratio dis-
similarities are more robust for normalized partial matching
and has a comparable complexity. Furthermore, bin-ratio
dissimilarity contains high order information, which is very
useful in classification.

Rubner et al. [27] propose a cross-bin distance called
the Earth Mover’s Distance (EMD). EMD defines the dis-
tance computation between distributions as a transportation
problem, which means EMD can do matching cross differ-
ent bins. Zhang et al. [37] show outstanding performance
of EMD on various datasets. However, the time complex-
ity of EMD is larger than O(N?3), where N is the num-
ber of histogram bins. In addition, as shown is Fig. 1,
EMD also suffers from the normalized partial matching,
because it depends on the value differences between bins.
Our work shares the philosophy by including cross-bin in-
teractions. In our methods, however, the interactions are
between bins from the same histogram, while interactions
in cross-bin distances act on bins from different histograms.
Moreover, the proposed dissimilarity measures are compu-
tationally more efficient than most cross-bin distances.

Co-occurrence statistics is known to be relevant for cat-
egory classification. Many studies have been conducted to-
ward modeling spatial co-occurrence of visual words [30, 2,
, etc.]. Agarwal and Triggs [!] propose
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a hyperfeature which exploits spatial co-occurrence statis-
tics of features. Li et al. [17] introduce a general frame-
work called Markov stationary features (MSF), which char-
acterizes the spatial co-occurrence of histogram patterns by
Markov chain models. In comparison, the proposed BRD
focuses on the co-occurrence in feature space. We use the
information directly comes from histograms, therefore the
bin-ratio dissimilarities are more efficient and readily to be
used in different scenarios.

Our work is also motivated by recent matching algo-
rithms with high-order statistics, such as the second-order
programming [2] and matching [16] and high-order match-
ing [6]. In [6], the authors propose a tensor-based algorithm
for high-order graph matching. They formulate the hyper-
graph matching problem as the maximization of a tensor
function over all permutation of the features tuples. Our
work is partially inspired by this idea in that the proposed
dissimilarity measures use the high-order information over
different bins within a histogram.

3. Bin-Ratio Dissimilarity between Histograms

Notation: In the rest of the paper, we use a bold letter to
indicate a vector, e.g., h, and denote its ith elements as h(i),
or h; when there is no ambiguity. We use || . ||; and || . |2
to indicate Ly and Lo norms respectively.

3.1. Bin-Ratio Dissimilarity

Let us denote a normalized histogram h € R™ with n
bins in total. In this paper, we assume L normalization is
applied to histograms in our proposed methods, i.e.,

|| hl3= Z 1<k<nh?(k) =1. (1)

To capture pairwise relationship between histogram bins,
we define ratio matrix H € R™ ™ of a histogram h such
that the matrix elements capture the ratios of paired bin val-
ues. In particular, H € R™*" is defined as
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This ratio matrix is invariant to normalization since each
element is invariant to normalization. Furthermore, each
matrix element h;/h; measures the relation between ele-
ments h;, h; in the original histogram h. This inspires us
to compare ratio matrices when comparing two histograms.
Intuitively, the i*" row of the ratio matrix represents the ra-
tios all bin values to the value in the i bin. We deal with
the i*" row of a ratio matrix instead of the i*" bin of a his-
togram. Specifically, to compare the i*" bins of two his-
tograms p and q, we can define the dissimilarity d; as the

h

sum of squared differences (SSD) between i rows of cor-

responding ratio matrices, that is,

n 2
di(p.q) =) (q’ - p’) 3)

=1 qi Di

Such definition apparently suffers from the instability prob-
lem when p; and g; are close to zero. To avoid this problem,
we include the normalization part and define the following
dissimilarity

no /4G _ Pi\>2
qi Pi
dpri(p@) = Y (14_1> “)
j=1 qi pi

This normalization makes the whole dissimilarity variant to
normalization. However, the gaining in robustness is more
important, and strict normalization invariant is not neces-
sary. Consequently, we define the bin-ratio dissimilarity
(BRD) dy,-(p, q) between two histograms p, q as

n n n 4 pi\ 2
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Though seems to have quadratic complexity, BRD can

actually be computed in linear time, as derived in the fol-
lowing. Starting from (4), dy, ; can be rewritten as
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Note that the L, normalization (1) assumption is used in
steps (6) and (7), though the L, normalization is not criti-
cal for deriving the linear complexity. In other words, other
normalization schemes may also yield a linear computation
formula. Also note that we define dy, ;(p, q)=0 for the de-
generated case where p;=¢;=0", though in the derivation we
ignore such case for clarity. Using formulation (8), the BRD
dp, can be written as

& Pidi
dy(pq) = Y (1 Tt ) p +(l|§)

i=1 g

- Piq;
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'We can alternatively add a very small value in the denominator of (7).
Compared with multiplication, the adding complexity can be ignored.



Using (9), BRD can be calculated in linear time. This is

: 2 iqi :
because @th items ||p + q||2. anq Yo (pf +’fh_)2 have linear
complexities and the combination of them take only con-
stant time.

3.2. Combine Bin-Ratio Dissimilarity with Other
Dissimilarities

While robust for partial matching and normalization,
BRD suffers from problems caused by small noisy bins.
Specifically, from equation (8), we see that when one of
P;,q; is zero and the other is a small noise, we have
dpr,i(p,q) = 1. This observation implies that BRD can be
sensitive to small noises. On the other hand, many classical
histogram measures handle nicely small noises. Therefore,
instead of directly using BRD, we combine it with other
methods for complementary gaining.

We first combine BRD with the widely used L distance,
which is known to be robust to outliers small noises. We use
bin-level combination (different than that in the multiple-
kernel methods [10, 13]), since intuitively this leads to
closer interaction between the two methods. The combined
dissimilarity, which we call L;-BRD, is derived from (8) as
following

di,bri(P, Q) = [Pi — gildbr,i
i — @ilpigi
— - - R gl a0
n
dllb'f’(p? q) = Z dllb'f,’i (p7 q)
=1
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Intuitively, we see from Eqn. (10) that when one of bins
Di,q; is zero, L1-BRD automatically adopts L; distance,
which is more robust than the original BRD. In our experi-
ments we found that such combination yields very promis-
ing classification results (See §4).

Similar to L;-BRD, x? distance can also be combined
with BRD. This combination generates the x?-BRD, which
is presented below,

(pi — qi)2
Di + ¢
dxzbr(pvq) :dX2 (p7q) -

n

(pi — Qi)QpiQi
2p+ql3 Y ————, (13)
] (pi +ai)

dXani (p7 q) =2 dbni (p7 (I) (12)

where d,2(p,q) = 2> 1, % is the x? distance be-
tween p, q.

Similar to BRD, both L;-BRD and X2 -BRD have linear
computational complexities, which make them an efficient
solutions to large scale tasks.
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Figure 2. Example images from Scene-15 dataset, one per class.

|

3.3. Kernel-based Classification

To use bin-ratio information for classification tasks, we
combine BRDs with the standard bag-of-words model. To
compare with other methods, such as XQ, EMD, etc., we
follow the same kernel-based framework as in [37]. For
this purpose, we first build BRD kernels using the extended
Gaussian kernels [5],

1
K(p,q) = exp (—AD(p,q)> , (14)

where D(p,q) is a dissimilarity if p and q are histograms
of images; A is a scaling parameter that can be determined
by cross-validation. In practice, we have tested BRD, L;-
BRD, XQ—BRD for the dissimilarity D(.), and found that
L1-BRD generates the best performance.

We have not proved whether the BRD-based kernels are
Mercer kernels or not. Nevertheless, during our experi-
ments, these kernels have always generated positive definite
Gram matrices. It should be noted that some widely used
kernels, e.g. EMD-kernel, also have not been proofed to
be Mercer kernel [37]. In addition, even some non-Mercer
kernels usually work well in real applications [5].

4. Experiments

We apply the proposed BRDs (i.e., BRD, L;-BRD and
x2-BRD) to category and scene classification tasks on four
public datasets: Scene-15 dataset [15], PASCAL VOC
2008 [7], PASCAL VOC 2005 Test2 [8], and Oxford Flow-
ers [22]. We first compare BRDs against x2, L1, and his-
togram intersection on Scene-15 dataset. Then we will
show our results on PASCAL 2008 and 2005, by comparing
directly with with the winners’ results. Finally, we test L;-
BRD on the Oxford flowers and report better classification
rate than all previous tested methods.

4.1. Scene-15 dataset

The Scene-15 dataset [15] (see Fig. 2 for examples) is
compiled from several datasets from earlier studies [9, 24,

]. It contains 15 categories and 4485 scene images, with
200 to 400 images per class.

For comparison, we follow the experimental setup of van
Gemert et al. [11]. The classification is repeated for 10
times, with randomly split training testing sets. In [11],
Histogram Intersection (HI) is used on this dataset and a
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Figure 3. Classification performance results of various types of histogram
similarity and dissimilarities for the Scene-15 dataset over different vocab-
ulary sizes and codebook type. The "Hard” and ”Unc” represent using the
codebook type of hard assignment and codeword uncertainty respectively.

kernel codebook technique is used in comparison with stan-
dard codebook (i.e., hard codebook). We re-implement HI
kernel and apply 2, L; and the proposed BRDs on this
dataset with the same experimental setup for fair compar-
ison. Specifically, in each round, a codebook vocabulary
is created using k-means on the train set. Then we use
normal codebook (hard assign) and kernel codebook (code-
word uncertainty) respectively. For each type of codebook,
we use an SVM with several histogram distances/kernels:
X2, HI, L,, and BRDs. The BRDs are based on the Lo
normalization, while the other distances are all based on
the L; normalization. For multi-class classification, we
use Libsvm [4] and one-versus-all scheme. Five-fold cross-
validation is used on the train set to tune parameters. We re-
port the average accuracies over 10 rounds. For each round,
the accuracy is calculated by averaging the accuracies of
each category.

For image features, we use SIFT descriptors sampled on
a regular grid with spacing of eight pixels. SIFT descriptors
are calculated on 16x16 patches. Our re-implementation
results of HI are similar to the results of [11]°.

Fig. 3 shows the results of x2, HI, L;, BRD, x2-BRD,
and L,-BRD with various codebook sizes: 200, 400, 800
and with normal codebook (hard assign) or kernel code-
book (codeword uncertainty). From the results, we can see
that BRD by itself performs comparable to previous tested
methods already. This suggests that bin-ratios contain rich
discriminative information. Furthermore, when combined
with L, distance, the L1-BRD generates the best perfor-
mance, which validates our conjecture in §3.2.

4.2. PASCAL VOC 2008

The PASCAL Visual Object Classes Challenge [8, 7]
(see Fig. 4 for examples) provides a yearly benchmark for

2In [11], the experimental results are summarized as visually in bar-
charts instead of detailed rates. Our re-implementation generates classifi-
cation rates that are visually similar to theirs.

Figure 4. Example images from PASCAL 2008, one per class.

evaluating category classification methods. The PASCAL
VOC 2008 consists of 20 classes with 8465 images. The
whole dataset is divided into a predefined “trainval” set with
4332 images and “test” set of 4133 images. The “trainval”
dataset is further divided into two parts: a validation set
containing 2221 images and a training set containing the
rest. Category labels are only released for “trainval” set im-
ages to avoid parameter overfitting. The results on the test
set are provided by the PASCAL organizers. Therefore, the
performance on the test set is more reliable.

We follow the framework of the winners of PASCAL
2007 by Marszalek et al. [21] and PASCAL 2008 by Tahir
et al. [32]. Compared with the winner of PASCAL 2008,
the main difference lies in that L{-BRD is used instead of
x?2. Specifically, for each image we use two sampling meth-
ods for local patches: Harris-Laplace point sampling and
densely sampling with every six pixels. Then each image
patch is further represented by SIFT and four color-SIFT
descriptors [29]: OpponentSIFT, rgSIFT, C-SIFT and RGB-
SIFT. These color-SIFT descriptors have specific invariance
properties and can be used to improve classification per-
formance [29]. The patch descriptors of training images
are clustered by k-means to generate a vocabulary of 4000
words. Kernel codebook (codeword uncertainty) is used to
for further improvement. After that, three different spatial
pyramids are used: the whole image without subdivision
(1x1), image parts divided into 4 quarters (2x2) and a pyra-
mid with three horizontal bars (1x3). L;-BRD is used to
calculate histogram dissimilarities followed by the extended
Gaussian kernel (14) to be used in SRKDA [3] as in the
winner’s method. Parameters are calculated on validation
set and further used for test set.

Tables 1 lists the results of our method against the win-
ner’s method [32] on both validation and test sets. The re-
sults show that, on the validation set where groundtruth is
known, L;-BRD outperforms the winner’s method in 14 out
of 20 categories, as well as the average performance. On
the test set, L1-BRD works not only better than the win-
ner’s method, but also outperforms the best achieved results
(from different methods) in 11 out of 20 categories. Since
we strictly follow the winner’s method except histogram



Validation Set Test Set
Winner | L1-BRD || Winner Best L1-BRD
[32] [32] |achieved [7]
Aeroplane | 79.2 71.5 79.5 81.1 79.7
Bicycle 39.7 44.6 54.3 54.3 56.3
Bird 49.1 50.8 61.4 61.6 61.1
Boat 62.6 63.0 64.8 67.8 66.5
Bottle 18.8 20.1 30.0 30.0 30.6
Bus 52.3 55.1 52.1 52.1 56.5
Car 55.5 54.8 59.5 59.5 58.9
Cat 56.2 55.1 59.4 59.9 58.1
Chair 42.5 454 48.9 48.9 49.4
Cow 24.1 26.4 33.6 33.6 34.9
Dining table| 25.7 29.0 37.8 40.8 43.5
Dog 32.8 36.8 46.0 47.9 47.0
Horse 47.1 49.5 66.1 67.3 67.5
Motorbike | 39.9 41.5 64.0 65.2 62.9
Person 88.0 87.2 86.8 87.1 86.6
Potted plant| 24.1 28.5 29.2 31.8 33.2
Sheep 30.8 31.2 423 42.3 42.7
Sofa 38.7 38.7 44.0 454 45.7
Train 67.4 68.5 77.8 77.8 76.2
TV/monitor| 50.9 54.5 61.2 64.7 64.8
mean AP | 46.3 47.9 54.9 N/A 56.1

Table 1. Category and average precisions of the winner’s method
and the proposed method on the validation set of PASCAL 2008.

dissimilarities, the results on PASCAL 2008 clearly demon-
strate the superiority of the proposed methods.

4.3. PASCAL VOC 2005

We further test our method on PASCAL VOC 2005
dataset [8]. This dataset contains both classification and de-
tection tasks. The classification task contains a easy test
set (testl) and a difficult test set (test2). We focus on the
difficult set because the performance on the easy set is satu-
rated. The set contains four categories (motorbike, bicycle,
car and persons) and 1543 images (the images including dif-
ferent objects are counted only once). The best score in the
competition of test2 is achieved in [8] using x? distance
with an extended Gaussian kernel. After that, a similar re-
sult is achieved in [37] using the EMD distance. A higher
score is presented in [19] using Proximity Distribution ker-
nel (PDK), which takes the geometric context information
into consideration.

We follow the experimental setup in [8]. Specifically, we
use Harris-Laplace detector and SIFT descriptor and 1000
visual words by k-means from training features. For fair
comparison, we use standard codebook instead of the ker-
nel codebook. The main difference between their method
and proposed one is that we use L;-BRD instead of x?2.
The same extended Gaussian kernel is used to incorporate
L1-BRD in SVM classifier. Libsvm [4] is used and the pa-

Motor | Bike | Person | Car | Average
Winner (x?) [8] | 79.8 [72.8] 71.9 [72.0] 74.1
Winner (EMD) [37]| 79.7 | 68.1 | 753 |74.1| 74.3
PDK [19] 769 |70.1| 72.5 |78.4| 745
L1-BRD 79.1 |75.4| 739 |782| 176.7

Table 2. Correct classification rates (at equal error rates) on the
PASCAL challenge 2005 Test Set 2.

Figure 5. Example images from Oxford Flowers, one per class.

rameter of SVM is decided by two-fold cross-validation on
training set.

Table 2 compares proposed results with several state-of-
the-art. We can see that we get the best average equal er-
ror rate and improve previous result by 2.2%. Although
we only get one best result out of four categories, the re-
sults of other categories are also comparable to the best.
This implies that the proposed L;-BRD, which combines
L, distance and ratio-bin dissimilarity, is relatively stable
over different categories.

4.4. Oxford Flowers

The Oxford Flowers dataset [22] (see Fig. 5 for exam-
ples) contains images from 17 flower categories with 80 im-
ages per category. For each category, 40 images are used for
training, 20 for validation and 20 for testing. For compari-
son, we directly use the three splits of this dataset provided
by the authors of [22], then run three times with these splits
and report the average accuracy and variance. We use the
same experimental setup as for PASCAL 2008 except that
standard SVM is used instead of SRKDA. The configura-
tion include: two types of sampling — Harris-Laplace and
dense sampling; five types of descriptors — SIFT and four
types of color-SIFT descriptors; three types of pyramids —
1x1, 2x2 and 1x3. In total, 30 (2x5x3) channels of features
are used and combined by averaging the histogram dissimi-
larities of each channel. For each type of descriptor, a kernel
codebook of 4000 codewords is used. For comparison, we
consider two histogram distances: L;-BRD and x?2. All the
experimental setups of these two distances are exactly same
to avoid bias.

Table 3 summarizes the recognition accuracies of sev-
eral published methods along with the proposed methods.



Methods Recognition rate
Nilsback and Zisserman [22] 71.76£1.76
Varma and Ray [33] 82.554+0.34
Nilsback and Zisserman [23] 88.33+0.3
X2 87.45+1.13
L1-BRD 89.02+0.60

Table 3. The average of per-class recognition rates of different
methods on the Oxford flower dataset.

We see again that L1-BRD achieves the best performance.
Also, by comparing with x? in the same experimental setup,
the superiority of using bin-ratio information is confirmed.

5. Conclusion

In this paper we introduce a group of histogram dissim-
ilarities called bin-ratio dissimilarities (BRD, L1-BRD, XQ-
BRD), which are robust to normalization and partial match-
ing problems. In addition, these BRDs capture high-order
statistics between histogram bins. We experimentally com-
pare BRDs with several state-of-the-art dissimilarity mea-
sures on four widely tested datasets for visual category clas-
sification. The proposed methods, especially L;-BRD, gen-
erate very promising results in all experiments. In the fu-
ture, we plan to investigate further the relation of BRD to
other dissimilarities and we also plan to extend BRDs to
more general tasks.
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