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Abstract—Large variations in image background may cause partial matching and normalization problems for histogram-based

representations, i.e., the histograms of the same category may have bins which are significantly different, and normalization may

produce large changes in the differences between corresponding bins. In this paper, we deal with this problem by using the ratios

between bin values of histograms, rather than bin values’ differences which are used in the traditional histogram distances. We propose

a bin ratio-based histogram distance (BRD), which is an intra-cross-bin distance, in contrast with previous bin-to-bin distances and

cross-bin distances. The BRD is robust to partial matching and histogram normalization, and captures correlations between bins with

only a linear computational complexity. We combine the BRD with the ‘1 histogram distance and the x2 histogram distance to generate

the ‘1 BRD and the x2 BRD, respectively. These combinations exploit and benefit from the robustness of the BRD under partial

matching and the robustness of the ‘1 and x2 distances to small noise. We propose a method for assessing the robustness of histogram

distances to partial matching. The BRDs and logistic regression-based histogram fusion are applied to image classification. The

experimental results on synthetic data sets show the robustness of the BRDs to partial matching, and the experiments on seven

benchmark data sets demonstrate promising results of the BRDs for image classification.

Index Terms—Histogram bin ratio, histogram distance, image classification
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1 INTRODUCTION

HISTOGRAM-BASED representation is widely applied to
many pattern recognition tasks, such as image or

scene classification, visual appearance modeling, and
visual action recognition, because of its simplicity and
rich discriminative information. In the Bag-of-Words
(BoW) model [8], [9], [23], [35], [38], [43], an image is
represented using a histogram of the visual words
obtained by quantizing visual patches, where each bin
value in the histogram represents the probability of
observing the corresponding word. Then, these histo-
grams are used for image classification, object detection,
and action recognition, etc. An efficient and effective
measure of the distance (dissimilarity) between histo-
grams plays an important role in histogram-based
applications.

1.1 Related Work

Currently, there exist several histogram distances [11],
[21], [23], [24], [25], [35], [36], [43] which can be classified
into bin-to-bin distances and cross-bin distances.

The bin-to-bin distances between two histograms are
based on the differences of the corresponding bins in the
histograms. Let h ¼ fhigni¼1 be a histogram for occurrence
statistics with n bins where hi represents the value of the
ith bin. The ‘1 and ‘2 distances between two histograms
hA and hB are khA � hBk1 and khA � hBk2, respectively,
where k:k1 and k:k2 are, respectively, the vector ‘1 and ‘2
norms. The histogram intersection [34] between two his-
tograms hA and hB is

Pn
i¼1 minðhA

i ; h
B
i Þ [13], [17], [22],

[40]. When the areas of the two histograms are equal,
the histogram intersection is equivalent to the ‘1 dis-
tance. The x2 distance [29] between two histograms hA

and hB is [8], [23], [24], [35], [43]:

dx2
�
hA;hB

� ¼ 2
Xn
i¼1

ðhA
i � hB

i

�2
hA
i þ hB

i

: (1)

The Bhattacharyya coefficient BðhA;hBÞ between histo-
grams hA and hB is

B
�
hA;hB

� ¼Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
hA
i h

B
i

q
: (2)

The Bhattacharyya distance DBðhA;hBÞ between hA and
hB is defined as: DBðhA;hBÞ ¼ � lnðBðhA;hBÞÞ. The
Jeffrey divergence DJdðhA;hBÞ between histograms hA
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and hB is defined as

DJdðhA;hBÞ ¼
Xn
i¼1

hA
i ln

2hA
i

hA
i þ hB

i

� �
þ hB

i ln
2hB

i

hA
i þ hB

i

� �� �
:

(3)

These bin-to-bin distances are widely used, because they
are simple, efficient, and easy to implement.

The cross-bin distances [14], [20], [27], [30] allow cross
bin comparison between two histograms to gain a more
robust measure of their similarities. Rubner et al. [30] pro-
posed a cross-bin distance, called the earth mover’s distance
(EMD), which is the first order Wasserstein distance. It
reduces distance calculation to a transportation problem.
Zhang et al. [43] showed that the EMD has an outstanding
performance on various data sets. However, the time com-
plexity of the EMD is Oðn3 logðnÞÞ, which is very high.
When the dimension of the feature vectors is large, the num-
ber of temporary variables required to compute the EMD is
so large that internal memory overflows may be produced.
As a result, performance of the EMD cannot be tested on
large image data sets.

Although the existing histogram distances, either the bin-
to-bin distances or the cross-bin distances, are effective in
many applications, they still have limitations which are dis-
cussed as follows.

The first limitation is the effect of partial matching on
bin values. The histograms of two images of the same cat-
egory may have bins whose values are significantly dif-
ferent, due to various amounts of background clutter
which are irrelevant to the foreground object or due to
occlusions of the foreground object by other objects. His-
tograms are often normalized in visual recognition to
adapt to large scale changes. However, normalization
may produce large changes in the differences between

corresponding bins in these histograms. As a result, it
may be difficult to classify images using histograms.
Fig. 1 shows an example of the partial matching problem.
In the figure, (a) and (b) are histograms of two images in
the same category, (c) is a reference histogram with a uni-
form distribution, and (d), (e), and (f) are the normalized
histograms corresponding to (a), (b), and (c), respectively.
While bins 1 to 4 are exactly the same in the histograms
shown in (a) and (b), bin 5 is significantly different due to
a large amount of background clutter in the image from
which histogram (b) is computed. The table (g) shows
that, before normalization, the distance between the histo-
grams shown in (a) and (b) is smaller than the distance
between the histograms shown in (a) and (c). The table
(h) shows that, after normalization, the typical bin-to-bin
distances, i.e., the ‘1 distance, the histogram intersection,
the x2 distance, the Bhattacharyya distance, and the Jef-
frey divergence, indicate that the histograms shown in (d)
and (f) are more similar than the histograms shown in (d)
and (e). The EMD is also strongly affected by partial
matching and histogram normalization, because it
depends on bin difference values. As a result, the partial
matching problem influences the measures of similarities
between images.

Current histogram distances do not consider the corre-
lations between pairs of bins in a histogram. These bin
correlations capture co-occurrences of visual words in the
Bag-of-Words model. For example, the visual words
“eye” and “mouth” usually appear together in face
images, and the ratio of the frequencies of the visual
words “eye” and “mouth” remains stable. Many techni-
ques [1], [2], [16], [19], [21], [31], [33], [39] take into
account joint word distributions and model the spatial
co-occurrence of visual words. For instance, Agarwal and
Triggs [1] proposed a hyper-feature which exploits spatial

Fig. 1. An example of the effects of partial matching on the distances between histograms: (a), (b), and (c) show three histograms before normaliza-
tion, where histograms in (a), (b), and (c) are [1, 3, 14, 1, 0], [1, 3, 14, 1, 25], and [10, 10, 10, 10, 10], respectively; (d), (e), and (f) are the correspond-
ing normalized histograms; (g) shows the ‘1 distances between histograms shown in (a) and (b) and between histograms shown in (a) and (c) before
normalization; (h) shows the distances between histograms shown in (d) and (e) and between histograms shown in (d) and (f), calculated using the
‘1 distance, the histogram intersection, the x2 distance, the Bhattacharyya distance, the Jeffrey divergence, the EMD, and the BRD.
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co-occurrence statistics of features. Li et al. [19] proposed
a Markov stationary feature which uses Markov chain
models to characterize the spatial co-occurrence of histo-
gram patterns. Both Ling and Soatto [21] and Nguyen
et al. [49], [50], [52] took into account the spatial distribu-
tion of code words by modeling the weak geometric con-
text of images. They encoded the spatial co-occurrence
statistics into the bag-of-features model by defining the
proximity distribution kernel of quantized local features.
Specifically, the co-occurrence statistics were encoded at
low level with respect to the detected key points. The
key-points-based features have an advantage over the
conventional ones, e.g., Gabor features, because they are
invariant to many geometric distortions and transforma-
tions. Other novel and robust image descriptors were also
developed in [51], [53] for applications to visual recogni-
tion tasks. Inspired by the use of co-occurrence statistics
in low level feature extraction in Ling and Soatto’s work
and Nguyen et al.’s work, we regarded that it is interest-
ing to encode co-occurrence correlations between the dif-
ferent bins of a histogram in a non-parametric way in a
histogram similarity measure. Fig. 1 is an example of co-
occurrence correlations between different bins: the histo-
gram bin correlations between the first four bins in histo-
gram (a) are repeated in histogram (b). These histogram
bin correlations are useful to produce a more accurate
measure of similarity between histograms. The Mahalano-
bis distance, which is covariance-based, encodes correla-
tions between different bins of a histogram. It is scale-
invariant. But, when the dimension of the feature vectors
is large, the covariance matrix is usually singular and
does not have an inverse. The Moore-Penrose pseudo-
inverse matrix may be used as an approximation. But its
computation is very costly.

1.2 Our Work

In this paper, we address the above challenges, and propose
a bin-ratio-based histogram distance [41]. Bin ratios are
defined as the ratios between histogram bin values. Given
an n-bin histogram h 2 <n, we define its ratio matrix as
H ¼ ðhi=hjÞ 2 <n�n. It contains the ratios defined by all the
pairs of bins in the histogram. Given two histograms, we
define their bin ratio-based distance as the sum of the
squared normalized differences over all the elements of
their ratio matrices. The BRD is combined with the ‘1 dis-
tance and the x2 distance, to form two new measures: the ‘1
BRD and the x2 BRD. These BRDs (i.e., the BRD, the ‘1 BRD,
and the x2 BRD) are applied to image classification. Logistic
regression, which is a type of probabilistic statistical fusion
model, is used to fuse multiple histogram distances for
improving the accuracy of image classification.

The main contributions of our work are summarized
as follows:

� The bin-ratio information in histograms is used to
construct a new histogram distance, the BRD. In
contrast with the existing histogram distances, the
BRD is more robust to the effects of partial matching
resulting from background clutter and occlusions, as
bin ratios of histograms describing the same object
have a higher similarity. As an example, in Fig. 1h

the BRD between the histograms in (d) and (e) is
less than the BRD between the histograms in (d) and
(f). The bin ratios capture correlations between pairs
of bins. The BRD includes cross-bin information
about the same histogram and forms a new type of
histogram distance: the intra-cross-bin distance. The
BRD has a linear computational complexity compa-
rable to the complexity of the bin-to-bin distances,
and much lower than the complexity of the cross-
bin distances.

� The BRD is flexible and can be easily combined with
other histogram measures to benefit from their
advantages. In particular, we propose the ‘1 BRD
and the x2 BRD which combine the properties of the
BRD and the properties of the ‘1 distance and the x2

distance.
� We propose a method for assessing the robustness of

histogram distances to partial matching. We also
propose image classification methods based on the
BRDs and the logistic regression fusion.

Extensive experimental results show the robustness of the

BRDs to partial matching, and illustrate very promising

results when the ‘1 BRD and the logistic regression-based his-

togram fusion are used to classify natural images.

The remainder of this paper is organized as follows:
Section 2 proposes the BRD. Section 3 presents the ‘1 BRD
and the x2 BRD. Section 4 describes the assessment of the
robustness of histogram distances to partial matching. Sec-
tion 5 describes kernel-based image classification using the
BRDs and logistic regression, and reports the experimental
results. Section 6 concludes the paper.

2 BIN RATIO-BASED HISTOGRAM DISTANCE

Histogram bin ratios are unchanged by normalization
although bin values are changed. It is intuitive that the
ratios of bins for the foregrounds in the images in the
same category are overall stable. The bin correlations, i.e.,
joint frequencies of visual words, are included in the
ratios between bins. These observations motivate the con-
struction of a new histogram distance based on the ratio
relations between bins, in order to yield more robust
image classification results.

The ‘2 normalization and the ‘1 normalization are two
typical histogram normalization methods. If the euclid-
ean distance measure or the cosine distance measure is
used, the ‘2 normalization is more appropriate. If the ‘1
distance measure or the x2 distance measure is used, the
‘1 normalization is more appropriate. While the ‘1 nor-
malization is popular for histogram statistics, the ‘2 his-
togram normalization is widely used in the computer
vision community. For example, Felzenszwalb et al. [42]
explicitly pointed out that the ‘2 histogram normalization
was applied to the Histogram of Oriented Gradients
(HoG) feature [37]. We use the ‘2 histogram normaliza-
tion and the square distance measure to define the BRD.

An ‘2 normalized histogram with n bins is a column
vector h 2 <n, such that

khk22 ¼
Xn
k¼1

h2
k ¼ 1: (4)
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To capture pairwise relations between bins, we define the
ratio matrixH 2 <n�n of h:

H ¼ hj

hi

� �
1�i;j�n

¼

h1
h1

h2
h1

h3
h1

� hn
h1

h1
h2

h2
h2

h3
h2

� hn
h2

� � � � �
h1
hn

h2
hn

h3
hn

� hn
hn

0
BBBB@

1
CCCCA ¼

hT

h1

hT

h2

�
hT

hn

0
BBBBB@

1
CCCCCA; (5)

where each matrix element hj=hi is the ratio of a bin value hj

to another bin value hi. These bin ratios are usually stable
for histograms describing the same object.

The ith row hT =hi in the ratio matrix represents the ratios
of all the bin values to the value of the ith bin. A squared
distance d p;qð Þ between two ‘2 normalized histograms p
and q is defined as

d p;qð Þ ¼
Xn
i¼1

q

qi
� p

pi

����
����
2

2

¼
Xn
i¼1

Xn
j¼1

qj
qi
� pj

pi

� �2

¼ P �Qk k22;

(6)
where P and Q are the ratio matrices for p and q, respec-
tively. The distance between two histograms is thus com-
puted as the squared ‘2 norm of the differences between
their ratio matrices.

The distance shown in (6) is unstable when pi or qi are
zero or close to zero: very small changes in the value of pi or
qi can produce large differences in the distance. To avoid
this problem, we propose to introduce a normalization term
1=qi þ 1=pi into (6). On dividing by this normalization term,
the influence of the denominators pi and qi in (6) is reduced.
Thus, the bin ratio-based squared distance of the ith row
between p and q is defined by

dBRD;i p;qð Þ ¼
q
qi
� p

pi
1
qi
þ 1

pi

�����
�����
2

2

¼
Xn
j¼1

qj
qi
� pj

pi
1
qi
þ 1

pi

 !2

¼
Xn
j¼1

piqj � pjqi
pi þ qi

� �2

: (7)

Using this normalization, dividing by pi or qi is replaced
with multiplying by pi or pi. The numerator piqj � pjqi still
represents ratio difference, and the denominator pi þ qi is
similar to the normalization term in the x2 distance. Using
(7), we define the squared bin ratio-based distance
dBRD p;qð Þ between histograms p and q as

dBRD p;qð Þ ¼
Xn
i¼1

dBRD;i p;qð Þ ¼
Xn
i¼1

Xn
j¼1

piqj � pjqi
pi þ qi

� �2

: (8)

In contrast to the ‘1 and ‘2 distances between n-
dimensional vectors, the BRD is defined using n� n ratio
matrices of vectors. It thus contains more information
than the ‘1 and ‘2 distances [2], [6], [18]. The assumption
in the BRD is that the ratio relations between histogram
bins are overall kept for images in the same category.
The BRD criterion is effective for dealing with the noise
(deformation or perturbation) which does not completely
destroy bin ratio relations.

The calculation of dBRD p;qð Þ, as given by (8), has qua-
dratic computational complexity Oðn2Þ. As shown in

Annex Appendix 1, the BRD dBRDðp;qÞ can be reformu-
lated as

dBRD p;qð Þ ¼ n� pþ qk k22
Xn
i¼1

piqi

ðpi þ qiÞ2
: (9)

Using (9), the BRD is calculated in a linear time complexity
OðnÞ, because both the terms pþ qk k22 and

Xn
i¼1

piqi

ðpi þ qiÞ2
(10)

on the right hand side of (9) have linear complexity, and the
combination of these two items takes only a constant time.
It is noted that the ‘1 normalization can be used for the
BRD. But if so, the corresponding computational complexity
is Oðn2Þ. It is noted that (10) is a reweighted correlation
measure between two histograms. It is interesting that it
contains the terms piqi which are also included in the Bhat-
tacharrya distance and it contains the terms pi þ qi which
are included in the x2 distance as normalization terms.

While the above BRD is robust to partial matching and
histogram normalization, it can be unstable if there are
noisy bins with small values. When one of pi or qi is zero
and the other is small (usually corresponding to small noise)
dBRD;i p;qð Þ ¼ 1. When both pi and qi are zero, dBRD;i p;qð Þ is
undefined in that it corresponds to “0/0”. These effects
show that the BRD is sensitive to small noise. By contrast,
many classical histogram measures handle small noise
effectively, as they are essentially based on differences
between bins. Therefore, we combine the BRD with other
histogram distance measures, in order to improve its stabil-
ity to small noise.

3 THE ‘1 BRD AND x2 BRD

In contrast with the multiple-kernel methods [10], [15]
which use multiple histogram distances, we explore differ-
ent combination between histogram distance measures. We
first combine the BRD with the widely used ‘1 distance,
which is known to be robust to outliers and small noise but
sensitive to partial matching. Two common combination
rules are sum and product. We choose the product as the
combination rule, because the sensitivity of the BRD to
small noise arises from the denominator, and multiplying a
term to the BRD may reduce the effect of the denominator
in the BRD. The ‘1 BRD of the ith row between histograms p
and q is defined as

d‘1�BRD;iðp;qÞ ¼ jpi � qijdBRD;i

¼ jpi � qij � jpi � qijpiqi�
pi þ qi

�2 kpþ qk22; (11)

where Equation (E) in Annex Appendix 1 is substituted into
(11). The ‘1 BRD between p and q is defined as

d‘1�BRDðp;qÞ ¼
Xn
i¼1

d‘1�BRD;iðp;qÞ

¼ kp� qk1 � kpþ qk22
Xn
i¼1

jpi � qijpiqi
ðpi þ qiÞ2

: (12)
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It is seen from (12) that when bin value pi or qi is zero, the
product of the BRD and the ‘1 distance reduces to the ‘1 dis-
tance which is robust to small noise. This ensures that the ‘1
BRD which is naturally better suited to partial matching
than the ‘1 distance is more robust than the original BRD in
the presence of small noise.

Similarly, the x2 distance is combined with the BRD to
generate the x2 BRD. The x2 BRD of the i-th row between p
and q is defined as

dx2�BRD;iðp;qÞ ¼ 2
ðpi � qiÞ2
pi þ qi

dBRD;iðp;qÞ: (13)

The x2 BRD between p and q is then given by

dx2�BRDðp;qÞ ¼
Xn
i¼1

2
ðpi � qiÞ2
pi þ qi

dBRD;iðp;qÞ

¼ dx2ðp;qÞ � 2kpþ qk22
Xn
i¼1

ðpi � qiÞ2piqi
ðpi þ qiÞ3

; (14)

where

dx2ðp;qÞ ¼ 2
Xn
i¼1

ðpi � qiÞ2
pi þ qi

; (15)

is the x2 distance between p and q.
It is noted that the ‘1 BRD and the x2 BRD still have linear

computational complexity OðnÞ. This makes them suitable
for large scale tasks.

4 ROBUSTNESS TO PARTIAL MATCHING

In the following, we address the evaluation of the robust-
ness of histogram distances to partial matching using syn-
thetic data.

We use three histograms hA, hB, and hC :

� The first histogram hA is obtained from an ideal
object model. For example, for object recognition, hA

is the histogram of visual words generated from an
image containing nothing but the foreground object,
i.e., hA is not affected by background clutter and
occlusion.

� The second histogram hB is obtained from an image
that contains both the foreground object and back-
ground clutter. In addition, parts of the object may
be occluded.

� The third hC is a reference histogram which contains
the least information for the application. It can be the
average histogram of the samples. Ideally, the aver-
age histogram is just the uniform histogram.

Given a histogram distance measure d :; :ð Þ, we check whether

d hA;hB
� �

< d hA;hC
� �

for each sample. Using experimental

data sets, the probability that d hA;hB
� �

< d hA;hC
� �

is com-

puted. This probability is used to estimate the robustness of

distance d :; :ð Þ. In the method, comparison for each sample is

carried out first, and then the statistics of the comparison

results are calculated and used to describe the robustness of a

histogram distance.

We simulate the following different cases of partial
matching to test the robustness of histogram distances:

� We randomly generate the histogram of the fore-
ground object and the histogram of the background
to simulate pure background clutter without any
occlusions, i.e., homogeneous background noise.

� The foreground and background histograms are gen-
erated to simulate random histogram contamination.

� A new image is synthesized by combining a fore-
ground object image and a background image
according to a random occlusion relation such that
partial matching occurs between the histogram of
the foreground object image and the histogram of
the synthetic image.

These cases cover synthetic histogram data and the histograms

data extracted from synthesized images. The histogram data

are useful for exploring the properties of histogram distances.

In the first case, we supply a simplified theoretical analysis and

a partially theoretical motivation to support the claim that the

BRDs are robust to partial matching. The use of simulated

data in the second case is useful because a very large number

of samples are produced to test the robustness of histogram

distances. The third case in which real images are used to simu-

late partial matching can partially reveal the properties of his-

togram distances obtained from real images, although the set

of the real images only cover partially the histogram space.

In the following, we consider first synthetic histograms
which are generated in the first and second cases, and then
the histograms of synthetic background images.

4.1 Synthetic Histograms

We evaluate the robustness of the histogram distances in the
context of background clutter, but without occlusion. The
following three simple four-bin histograms are defined:

hA ¼ ð1 u v 0Þ
hB ¼ ð1 u v eÞ
hC ¼ ð1 1 1 1Þ;

8<
: (16)

where the parameters u, v, and e satisfy 1 � u � v and
0 < e. In (16), the values of the first three bins in hA are
kept in hB. The fourth bin simulates the effects of back-
ground noise.

Let S ¼ d hA;hC
� �� d hA;hB

� �
. Our aim is to find out

how S changes when background noise e increases. The ‘1
histogram normalization is used for the ‘1 distance and the
x2 distance. The ‘2 normalization is used for the BRD, the ‘1
BRD, and the x2 BRD. Annex Appendix 2 gives the explicit
formulae for the considered distances.

From the derivations in Annex Appendix 2, it is seen that
for each fixed pair u; vð Þ, d hA;hB

� �
increases, whatever the

chosen distance d, when background noise e increases, and
d hA;hC
� �

is independent of e. It follows that S ¼ d hA;hC
� ��

d hA;hB
� �

is strictly monotonically decreasing when e
increases. This indicates that the more the background noise,
the less accurate thematch to the foreground object.

Let eD be the root of the equation S ¼ 0 in which e acts as
a variable. Because S is strictly monotonically decreasing,
when e < eD, S > 0, i.e. d hA;hC

� �
> d hA;hB

� �
, and when

e > eD, S < 0 i.e. d hA;hC
� �

< d hA;hB
� �

. Therefore, we
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can use the value of eD to estimate the robustness of the his-
togram distance to partial matching. Let ed1 and ed2 be,
respectively, the roots of S ¼ 0 for the distance d1 and the
distance d2. If ed1 > ed2 , d1 is more robust to partial match-
ing than d2.

We calculated the values of eD for different histogram dis-
tances with different pairs u; vð Þ, where 1 � u � v � 100.
Table 1 shows the probability of ed1 > ed2 for distances d1
and d2 among different values of u and v. We compared the
proposed BRDs with the ‘1 distance and the x2 distance. For
the one dimensional histograms used in the experiments, the
histogram intersection is equivalent to the ‘1 distance [34].
Similarly, when there is not any prior information on the cost
matrix of the EMD, the EMD is also equivalent to the ‘1 dis-
tance. Therefore, the observations in the experiments can be
generalized to the EMD and the histogram intersection.
Among all the 5,050 pairs of u; vð Þ excluding (1, 1), the values
of eD for the BRDare always larger than those for other distan-
ces. This means that the BRD is more robust to homogeneous
background noise than other distances. This is because the
BRDs embed bin correlation information which remains sta-
ble against background clutter.

In real applications, the background clutter may include
occlusion, and the background noise is often very complex,
influencing the values of a number of bins. So, we explore par-
tialmatchingwhen the histograms are randomly corrupted.

We assume that the background corrupts the foreground
object randomly, e.g., with occlusion. Let the vector hback ¼
v ðhb

1 hb
2 � � � hb

i � � � hb
nÞ be the histogram of the back-

ground, where n is the number of bins and v is a parameter
controlling the influence of background information. We
define the histogram hA of the foreground object, the histo-
gram hB of the image, and the reference histogram hC

as follows:

hA ¼ �hA
1 hA

2 � � � hA
i � � � hA

n

�
hB ¼ hA þ hback

hC ¼ ð1 1 � � � 1 � � � 1Þ:

8<
: (17)

Each bin value in hA and hback is randomly sampled from
a uniform distribution over [0, 1]. Because in real applica-
tions only a part of the histogram bins are strongly per-
turbed by background data, we randomly set some bin
values in hback to zero. Let r 2 [0, 1] be the fraction of the
bins influenced by background. When r ¼ 1, the back-
ground contains all types of visual words and influences
every bin in hA. Given v and r, each pair hA and hback are
randomly generated, and it is checked whether the

inequality dðhA;hBÞ < dðhA;hCÞ holds for distance d.
This process is repeated for a number of times, and the
probability that the inequality holds is calculated and used
as a measure of the robustness of d. Many probabilities can
be recorded when v and r change.

In the experiments, the number of bins was set to 100.
Given a value of v and a value of r, 10,000 samples were
used to check whether dðhA;hBÞ < dðhA;hCÞ holds, and
then the probability of dðhA;hBÞ < dðhA;hCÞ was obtained.
Fig. 2 shows the results for the ‘1 distance, the x2 distance,
the Bhattacharyya distance, the Jeffrey divergence, the
EMD, the BRD, the ‘1 BRD, and the x2 BRD. The figure
reveals the following useful points:

� When v ¼ 1, almost every histogram distance d
yields a probability of 1 for dðhA;hBÞ < dðhA;hCÞ.
This means that when the background noise is small,
all histogram distances give a correct classification.

� When v increases above 1, the performance for all
the histogram distances falls rapidly. This shows
that large background noise has a strong negative
effect on the accuracy of classification.

� When r ¼ 1, the probability that dðhA;hBÞ <
dðhA;hCÞ is a maximum for each distance d. When
r ¼ 0:4 or 0.6, the probability that dðhA;hBÞ <
dðhA;hCÞ is low. This is mainly due to the histogram
normalization. When r ¼ 1, all the bins of hB have
larger values than the corresponding bins in hA.
Then after normalization, the distance between hA

and hB decreases. When r ¼ 0.4, 40 percent of
the bins in hB are larger than the corresponding
bins in hA and the rest have the same values as the
corresponding bins in hA. After normalization, the
60 percent unchanged bins in hB are decreased and
the 40 percent increased bins may be increased or
decreased. The result is that the distance between hA

and hB is relatively large and matching the histo-
grams becomes less accurate. This situation is the
most common in real applications, because the back-
ground usually does not contain all the visual words
of the foreground object.

� The ‘1 BRD and the x2 BRD are significantly more
accurate than all other distances. This result is differ-
ent from the results for the homogeneous back-
ground. This is because when the background
corrupts the foreground object randomly, the sensi-
tiveness of the BRD to small noise is exposed clearly.
These results demonstrate the effectiveness of the
bin level combination between the BRD and the ‘1
and x2 distances.

� The different histogramdistances have their own char-
acteristics. For example, the BRD is robust to homoge-
nous background noise and the x2 BRD is robust to
random background noise. No distance measure can
outperform all its competitors in all cases.

4.2 Synthetic Background Images

From a real image data set which consists of object images
and background images, object images and foreground
images are selected and combined to produce synthetic
images in the following two ways:

TABLE 1
The Results of Comparison between Different Histogram

Distances for Simulated Homogeneous Background Noise:
In Each Row One of the Distances Is Compared

with Other Distances

>‘1 >x2 >BRD >‘1 BRD >x2 BRD

‘1 N/A 61.07% 0 2.24% 3.74%
x2 38.93% N/A 0 0.34% 2.30%
BRD 99.98% 99.98% N/A 99.98% 99.98%
‘1 BRD 97.76% 99.66% 0 N/A 27.29%
x2 BRD 96.26% 97.70% 0 72.71% N/A

HU ET AL.: BIN RATIO-BASED HISTOGRAM DISTANCES AND THEIR APPLICATION TO IMAGE CLASSIFICATION 2343



� The background image is placed onto the foreground
image such that the foreground object is partly
occluded by the background image.

� The foreground object image is placed randomly
onto the background image, and then the back-
ground image is regarded as clutter.

The histogram hA of each foreground image and the histo-

gram hB of each synthetic image are constructed. The refer-

ence histogram hC is set to the average histogram of all the

foreground images. We calculate the probability that

dðhA;hBÞ < dðhA;hCÞ for each distance function d using a

large number of synthetic images. This probability is used to

measure the robustness of d.

In the simulation, we selected 320 object images with 16
categories from the Caltech256 data set [12], where each cat-
egory consists of 20 images and 467 background images.
Each synthetic image was obtained by randomly combining
a foreground image and a background image from the data
set. Half of the synthetic images were obtained by placing
the background image onto the foreground image, as shown

in Fig. 3a. The image size ratio g of the background image to
the foreground object image was randomly chosen from
[0.1, 0.3]. The foreground object image was fixed, and the
background image was resized according to g and ran-
domly placed onto the foreground image. The limited range
for g ensures that there are no large occlusions. Half of the
synthetic images were obtained by randomly placing the
foreground object image onto the background image, as
shown in Fig. 3b. The ratio g was randomly chosen from
[1.5, 4] to avoid too large clutter.

For each foreground image, we repeated the above syn-
thetic process 100 times to construct 100 synthetic images.
The classic Bag-of-Words model was used to map each
image into a histogram. Scale invariant feature transform
(SIFT) features were extracted from images. The k-means
method was employed to cluster the feature vectors of the
images into 200 clusters where each cluster corresponded to
a visual word. For each image, the word the closest to each
feature component was found and the frequency of each
word was counted to form the word histogram. Then, the

Fig. 2. The probabilities that dðhA;hBÞ < dðhA;hCÞ for each histogram distance d, given random histogram corruption for a range of r and v: (a) r ¼
0.2; (b) r ¼ 0.4; (c) r¼ 0.6; (d) r ¼ 0.8; (e) r ¼ 1. The x-coordinate indicates the values of v, and the y-coordinate indicates the probabilities expressed
as percentages.
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histogram hA of each foreground image, the histogram hB

of each synthetic image, and the reference histogram hC

were constructed. The probability that dðhA;hBÞ <
dðhA;hCÞ for each distance function d was calculated using
the synthetic images. The results are shown in Fig. 4. It is
seen that the x2 BRD has the most accurate results, and the
‘1 BRD has accuracy close to the x2 BRD. The BRDs yield
much more accurate results than the ‘1 distance, the x2 dis-
tance, the Bhattacharyya distance, the Jeffrey divergence,
and the EMD whose cost matrix was calculated using the ‘2
distances of codebook cluster centers.

In the above three simulations, as reported in Sections 4.1
and 4.2, the robustness of the different histogram distances
to partial matching was thoroughly assessed. It is concluded
that the BRDs are more robust to partial matching than the
traditional five distances functions: the ‘1 distance, the x2

distance, the Bhattacharyya distance, the Jeffrey divergence,
and the EMD.

5 KERNEL-BASED IMAGE CLASSIFICATION

To use bin ratio-based histogram distances (BRDs) for
image classification [4], [7], [28], [44], [45], we combine
BRDs with the standard Bag-of-Words model. We follow
the kernel-based framework in [43], i.e., we build the ker-
nels of the BRDs using the extended Gaussian kernels [5]:

Kðp;qÞ ¼ exp � 1

A
dðp;qÞ

� �
; (18)

where d(p, q) is a squared distance between p and q which
are histograms of two images, and A is a scaling parameter
that can be determined by cross-validation. In [43], it is
shown that when A is the mean of all the distances between
samples, the ‘1 distance, the x2 distance, and the EMD
empirically perform most accurately. It is shown in our

experiments that the BRD, the ‘1 BRD, and the x2 BRD per-
form empirically most accurately when A is set to twice the
mean of all the distances between samples. Currently, it is
not known if BRDs-based kernels are Mercer kernels. Nev-
ertheless, in our experiments, these kernels have always
produced positive definite Gram matrices. It is noted that
some widely used kernels, e.g., the EMD-kernel, are also
not known to be Mercer kernels [43]. Some non-Mercer ker-
nels also work effectively in real applications [5].

We use logistic regression to fuse different histogram dis-
tances in a simple manner, and evaluate the associated clas-
sification results. Let x!¼ ðs1; s2; . . . ; sIÞ, where si(i ¼
1; 2; . . . ; I) is the probability output of the ith classifier and I
is the number of classifiers. The logistic regression for infor-
mation fusion is represented by

fð x!Þ ¼ 1

1þ e�ðw!� x!Þ
; (19)

where parameter vectorw is estimated using the training sam-
ples. The label for each test sample isdeterminedby the output
of the logistic regression.Weuse logistic regression to fuse the
results of the ‘1 BRD, the x2 distance, the Bhattacharyya dis-
tance, and the Jeffreydivergence for image classification.

We used the following seven benchmark data sets to test
the performance of the BRDs and the logistic regression-
based histogram fusion for image and scene classification:
the Scene-15 data set [17], PASCAL VOC 2008 [7], PASCAL
VOC 2005 [8], PASCAL VOC 2011, 17 Oxford Flowers [24],
102 Oxford Flowers [25], and Caltech-256. In the following,
we first give an initial description of the different data sets
and their setups, then provide a global synthesis of all the
experiments, and finally describe the local analysis on indi-
vidual data sets.

5.1 Data Sets and Setups

1) Scene-15 data set. This data set [17] is a combination of sev-
eral earlier data sets [9], [17], [26]. It contains 4,485 scene
images from 15 categories, with 200 to 400 images per cate-
gory. In [11], histogram intersection was used on this data set
and a kernel codebook technique was used in comparison
with standard codebook. For fair comparison, we closely fol-
lowed the experimental setup in [11]. For each image in this
data set, a SIFT descriptor was sampled on a regular grid

Fig. 3. Examples of synthetic images: (a) the foreground image is
occluded by the background image; (b) the foreground image is placed
randomly onto the background image.

Fig. 4. The probabilities of dðhA;hBÞ < dðhA;hCÞ for each distance
function d with a synthetic background experiment, where the x-coordi-
nate indicates different histograms and the y-coordinate indicates the
probabilities.
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with space of eight pixels between neighboring grids. Each
SIFT feature component was calculated on a 16 � 16 patch.
We applied the histogram intersection, the x2 distance, the ‘1
distance, and the proposed BRDs to the feature vectors of the
images in this data set. The data set was randomly split into
the training set and the test set. A codebook vocabulary was
generated using k-means on the training set. Normal code-
book (hard assign) and kernel codebook (allowing for code
word uncertainty) were used respectively. For each type of
codebook, the SVMwas employed for the kernels. For multi-
class classification, we used the one-versus-all scheme in the
Libsvm. Five-fold cross-validation was applied to the train-
ing set to tune the parameters. The accuracy for classifying
the test set was calculated by averaging the accuracies of
each category. The classification process was repeated for 10
rounds. The average accuracies of the different distances
over 10 roundswere reported.

2) PASCAL visual object classes (VOC) 2008. This data set
[7], [8], [23] consists of 20 object categories with 8,465 images
derived from the Internet. The backgrounds in the images
are usually very complex. A single image may contain mul-
tiple objects, and thus have multiple labels. The whole data
set has 2,111 training images, 2,221 validation images, and
4,133 test images. Category labels are only released for the
training and validation images. The labels of the test images
are unknown to all the users. The results on the test set
must be sent to the PASCAL organizers who report the
accuracy of the results. We followed the framework of the
winner of PASCAL 2008, Tahir et al. [35], except that we
used the ‘1 BRD instead of the x2 distance in [35]. The fea-
ture vectors [32] of the training images were clustered using
k-means to generate a vocabulary of 4,000 words. The ‘1
BRD was used to measure histogram distances. The
extended Gaussian kernel and the SRKDA method in [3]
were used to classify images. The parameters were esti-
mated on the validation set and then used on the test set.

3) PASCAL VOC 2005.We tested our method on the diffi-
cult classification test set (test 2) in the PASCAL VOC 2005
data set [8]. This test set is similar to PASCAL VOC 2008, but
it only contains the following four categories: motorbike,
bicycle, car, and persons. There are 1,543 images in the test
set. An image may include persons and a motorbike, and
thus may havemultiple labels. The best score in the competi-
tion to classify the images in the test set was achieved by
Zhang and Schmid using the x2 distance with an extended
Gaussian kernel as stated in [8]. Later, Zhang et al. [43]
obtained a similar result using the EMD distance. We fol-
lowed Zhang and Schmid’s experimental setup in [8]. The
Harris-Laplace detector and the SIFT descriptor were used to
extract features. We obtained 1,000 visual words by cluster-
ing the training samples using k-means. For fair comparison,
the standard codebook was employed instead of the kernel
codebook. We used the ‘1 BRD instead of the x2 distance in
[8]. As in [8], the extendedGaussian kernel and the SVMclas-
sifier [4] were used. The parameters of the SVM were deter-
mined using two-fold cross-validation on the training set.

4) PASCAL VOC 2011. We used the 2011 version of the
PASCALVOC classification data set to make the comparison.
The PASCAL VOC 2012 classification data set is the same as
that used in 2011. No new data have been added. In the data
set there are 10,994 images in 20 classes. The classification

results must be uploaded to the PASCAL official website to
obtain the information about their accuracy. We followed the
experimental setup of the winner of the PASCAL VOC 2011
classification challenge. For each image, SIFT, Local Binary
Pattern (LBP), and HOG features were extracted using dense
sampling and the detector of points of interest. The features
were then aggregated into the holistic Bag-of-Words image
representations. Various patch features were extracted using
multiple image segmentations to form the image-level BoW
representations. The detection features were obtained using
the deformable part model for different object classes. The
resulting detection kernel was combined with the visual fea-
ture kernel by weighted summation. Lasso prediction, the
SVM, and the regression classifier were combined into one
classifier. Kernel regression was utilized to fuse all the confi-
dences from these three classifiers.

5) 17 Oxford flowers. This data set [24] contains images
from 17 flower categories. There are 80 images per category.
For each category, 40 images were used for training, 20
images for validation and 20 images for testing [24]. We
used the same experimental setup as for PASCAL 2008
except that we used the standard SVM instead of the
SRKDA. Thirty channels of features were used and com-
bined by averaging the histogram distances of each channel.
For each feature, a kernel codebook of 4,000 code words was
used. We classified the images in this data set in three inde-
pendent experiments and reported the average accuracy
and variance.

6) 102 Oxford flowers. This data set [25] contains 8,189
images from 102 flower categories with 40-250 images per
category. For each category, there are 10 training images
and 10 validation images, and the remaining images are
the test images. We used the same experimental setup as
for the above 17 Oxford flowers data set, and this setup is
also the same as that used by the winners of PASCAL 2008,
Tahir et al. [35]. Specifically, the feature vectors of the train-
ing images were clustered to generate a vocabulary of 4,000
words. Kernel codebook was used for vector quantization.
The parameters were estimated on the validation set and
further used for the test set.

7) Caltech-256. The classical benchmarked Caltech-256
data set, which was used to evaluate the robustness of the
BRDs to partial matching, was also used to evaluate image
classification performance. As suggested by the builders of
the data set, for each category 30 samples were selected for
training, and 25 samples were selected for testing. A dense
sampling was used to generate local patches where each
patch corresponds to a point of interest. Then, each image
patch was further represented by the RGB-SIFT descriptor.
Three different image division modes were used to repre-
sent each image: the whole image without subdivision
(1 � 1), four image parts obtained by dividing the image
into four quarters (2 � 2) and three image parts obtained
by dividing the image into three horizontal bands (1 � 3).
The lengths of the feature vectors for the three division
modes are 2,000, 6,000, and 8,000, respectively. A kernel
was constructed for each division mode, and the average of
the three kernels was input to the SVM-based classifier. For
each image category, a vocabulary of 2,000 words was gen-
erated by clustering and a binary classifier was designed. A
total of 256 binary classifiers were obtained.
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5.2 Global Synthesis

Fig. 5 shows the results, on the Scene-15 data set, of the x2

distance, the ‘1 distance, the BRD, the x2 BRD, the ‘1 BRD,
and the histogram intersection with the following code-
book sizes: 200, 400, and 800, and with normal codebook
(hard assign) or kernel codebook (code word uncertainty).
Table 2 compares the classification precision of our method
on the test set of the PASCAL VOC 2008 data set with
those of Tahir et al.’s method [35] and with the highest
classification precisions for each image category from all
the competitors of PASCAL 2008. Table 3 compares the
results, on the PASCAL VOC 2005 data, of our ‘1 BRD and
logistic regression with the results of the Bhattacharyya
distance, the Jeffrey divergence and the Mahalanobis dis-
tance, and the results of the state-of-the-art methods in [8],
[21], [43], where the logistic regression fuses the ‘1 BRD,
the x2 distance, the Bhattacharyya distance, and the Jeffrey
divergence. Table 4 shows the results, on the PASCAL
VOC 2011 data set, of the methods based on the ‘1 BRD
kernel, and the x2 distance kernel, the Bhattacharyya dis-
tance kernel, and the Jeffrey divergence kernel, and the
result of the winner of the challenge. Table 5 summarizes
the recognition accuracies, on the 17 Oxford flowers data
set, of the ‘1 BRD-based method, the x2 distance-based
method, the Bhattacharyya distance-based method, the Jef-
frey divergence-based method, and the Mahalanobis dis-
tance-based method, the top-down attention-based method
[46], the methods in [24], [25], [36], and the logistic regres-
sion-based method. Table 6 shows the recognition rates, on

the 102 Oxford flower data set, of the ‘1 BRD-based
method, the methods based on the competing histogram
distances, the logistic regression-based method, and Nils-
back and Zisserman’s method [25]. Table 7 shows the
results, on the Caltech256 data set, of the ‘1 BRD, the com-
peting histogram distances, the logistic regression, the
method in [12], the method based on the dictionary learn-
ing on single manifold (DLSM) in [47], the method based
on the dictionary learning on multiple manifolds (DLMM)
in [47], and the method in [11]. The experimental setups
for the different histogram distances are exactly the same
to avoid bias. From these tables and figure, the following
global properties are revealed:

� The results of the ‘1 BRD are more accurate than or
comparable to the state-of-the-art results in all the
data sets.

� Our ‘1 BRD yields more accurate results than the x2

distance, the Bhattacharyya distance, the Jeffrey
divergence, and the Mahalanobis distance.

� The logistic regression-based information fusion
overall improves the classification accuracies of the

Fig. 5. Classification results for the various histogram distances on the
Scene-15 data set over different vocabulary sizes and codebook types.
The terms “Hard” and “Unc” refer to hard assignment and uncertain
assignment.

TABLE 2
Precisions of the Winner’s Method, the Best Precisions per
Category among All Competitors of PASCAL 2008, and the
Precisions of Our Method on the Test Set of PASCAL 2008

Category Winner [35] Best achieved [7] ‘1 BRD

Aeroplane 79.5% 81.1% 79.7%
Bicycle 54.3% 54.3% 56.3%
Bird 61.4% 61.6% 61.1%
Boat 64.8% 67.8% 66.5%
Bottle 30.0% 30.0% 30.6%
Bus 52.1% 52.1% 56.5%
Car 59.5% 59.5% 58.9%
Cat 59.4% 59.9% 58.1%
Chair 48.9% 48.9% 49.4%
Cow 33.6% 33.6% 34.9%
Dining table 37.8% 40.8% 43.5%
Dog 46.0% 47.9% 47.0%
Horse 66.1% 67.3% 67.5%
Motorbike 64% 65.2% 62.9%
Person 86.8% 87.1% 86.6%
Potted plant 29.2% 31.8% 33.2%
Sheep 42.3% 42.3% 42.7%
Sofa 44.0% 45.4% 45.7%
Train 77.8% 77.8% 76.2%
TV/monitor 61.2% 64.7% 64.8%
Mean accuracy 54.9% N/A 56.1%

TABLE 3
Correct Classification Rates at Equal Error Rates on Test Set 2 in the PASCAL Challenge 2005

Motor Bike Person Car Average

Winner [8] 79.8% 72.8% 71.9% 72% 74.1%
Winner (EMD) [43] 79.7% 68.1% 75.3% 74.1% 74.3%
Ling and Soatto [21] 76.9% 70.1% 72.5% 78.4% 74.5%
‘1 BRD 79.1% 75.4% 73.9% 78.2% 76.7%
Bhattacharyya 75.3% 74.1% 72.6% 78.5% 75.1%
Jeffrey divergence 76.5% 73.5% 74.3% 74.2% 74.6%
Mahalanobis 41.3% 71.9% 62.2% 75.5% 62.7%
Logistic regression 77.3% 72.5% 75.5% 83.2% 77.1%
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individual histogram distances. So, there is room for
improvement of the accuracy of the ‘1 BRD.

� The Mahalanobis distance yields much less accurate
results. This is because the feature vectors are very
sparse, and the covariance matrix is unable to
describe the distribution of the features.

� The results clearly show the effectiveness of the ‘1
BRD.

5.3 Local Analysis on Individual Data Sets

1) Scene-15 data set. On this data set, the results from our
re-implementation of the histogram intersection are close
to the results in [11]. The performance of the BRD by itself
is comparable to the performance of histogram intersec-
tion, although the BRD is sensitive to small noise. This
indicates that bin-ratios contain rich discriminative infor-
mation. The ‘1 BRD yields the largest average classification
rates over each vocabulary size and each codebook type.
This demonstrates the effectiveness of the combination of
the BRD and the ‘1 distance. The BRD and the x2 BRD are
robust to different types of background, but for complex
backgrounds in the set of real images, the ‘1 BRD yields
more accurate results.

2) PASCAL VOC 2008. It is shown that the ‘1 BRD outper-
forms the winner’s method in 14 out of 20 categories, and it
has a better average performance. Since we strictly followed
the winner’s method except for the histogram distance, the
results on the PASCAL 2008 data set clearly demonstrate
the superiority of the proposed bin ratio-based distance. In
11 out of the 20 categories, the precisions of our method are
higher than the best precisions obtained by all the competi-
tors. In 9 out of 20 categories, the ‘1 BRD did not achieve the
best results. This is because the best results for different
image categories may be due to particular choices of
features and classification strategies, and the features used

in our method and the assumption of the BRD may not be
most suitable for these nine categories.

3) PASCAL VOC 2005. On this data set, our method
obtains the most accurate result in one of the four catego-
ries. For other categories, the results of the ‘1 BRD are com-
parable to the best results. This indicates that the proposed
‘1 BRD is not sensitive to different image categories. In con-
trast with Ling and Soatto’s method [21] in which the spatial
co-occurrence statistics are considered in the feature extrac-
tion stage, the ‘1 BRD obtains more accurate results in the
categories of Motor, Bike, and Person by more than 1.4 per-
cent, but very slightly less accurate results on the category
of Car with a decrease of only 0.2 percent. The ‘1 BRD
improves on the average classification of Ling and Soatto’s
method by 2.2 percent. This indicates that our method is
effective to consider correlations between pairs of histogram
bins. It is noted that the ‘1 BRD does not yield the most
accurate results for some image categories. One of the rea-
sons is that if the noise completely destroys the bin ratio
relations in the histograms of the images in the same cate-
gory, the ‘1 BRD may not be accurate enough to compute
the distances between histograms.

4) PASCAL VOC 2011. Although many non-trivial adjust-
ments [48] used by the winner cannot be duplicated by us,
the result of the ‘1 BRD-based method, which is more accu-
rate than the results of the x2 distance-based method, the
Bhattacharyya distance-based method, and the Jeffrey
divergence-based method, is still comparable to the win-
ning result of the PASCAL VOC 2011 challenge.

5) 17 Oxford flowers. The ‘1 BRD yields a larger average
recognition rate and a smaller standard deviation than
the method in [25], which is in turn more accurate
than the methods in [24], [36]. The result of the top-down

TABLE 4
The Average Precisions of Different Methods

on the PASCAL VOC 2011 Data Set

Methods Recognition rate

‘1 BRD 77.17%
x2 distance 76.82%
Bhattacharyya 72.50%
Jeffrey divergence 76.61%
Winner 78.56%

TABLE 5
The Average Recognition Rates of Different Methods on the 17

Oxford Flowers Data Set

Methods Recognition rate (%)

Nilsback and Zisserman [24] 71.76�1.76
Varma and Ray [36] 82.55�0.34
Nilsback and Zisserman [25] 88.33�0.3
Top-down attention [46] 91.00
x2 87.45�1.13
‘1 BRD 89.02�0.60
Bhattacharyya 87.05�3.47
Jeffrey divergence 87.75�3.06
Mahalanobis 24.61�1.36
Logistic regression 91.47�2.04

TABLE 6
The Average Recognition Rates of Different
Methods on the 102 Oxford Flower Data Set

Methods Recognition rate

Nilsback and Zisserman [25] 72.80%
x2 79.68%
‘1 BRD 80.45%
Bhattacharyya 79.01%
Jeffrey divergence 79.43%
Mahalanobis 17.30%
Logistic regression 81.60%

TABLE 7
The Average Recognition Rates of Different Methods on the

Caltech-256 Data Set

Methods Recognition rate

‘1 BRD 45.57%
x2 distance 44.89%
Bhattacharyya 44.02%
Jeffrey divergence 45.46%
Mahalanobis 23.16%
Logistic regression 46.43%
Method in [12] 34.10%
DLSM [47] 35.12%
DLMM [47} 36.22%
Result in [11] 27.20%
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attention-based method [46] is slightly higher than that of
our BRD-based method. This is because, in the top-down
attention-based method, the hue features were included in
the process of producing Bag of Words based on the SIFT
features. When the logistic regression was used to fuse dif-
ferent histogram distances, an average recognition rate
which is larger than that of the top-down attention-based
method was obtained.

6) 102 Oxford flowers. It is seen that our ‘1 BRD-based
method yields a higher recognition rate than the method of
Nilsback and Zisserman who produced the data set. Logis-
tic regression explicitly improves the classification accura-
cies of the individual distances.

7) Caltech-256. The result of the ‘1 BRD is comparable to
the recently published results. The logistic regression yields
the most accurate result.

6 CONCLUSION

In this paper, we have proposed a group of bin ratio-based
histogram distances, i.e., the BRD, the ‘1 BRD, and the x2

BRD. These are new types of histogram distance, namely
intra-cross-bin distances, while previous histogram distances
have been bin-to-bin distances or cross-bin distances. These
BRDs contain the correlations between pairs of histogram
bins, while maintaining a linear computational complexity.
They are robust to partial matching and histogramnormaliza-
tion. The ‘1 BRD and the x2 BRD can overcome the sensitive-
ness of the BRD to small bin values or noise. The robustness of
the BRDs to partial matching is demonstrated using synthetic
data sets. We have compared BRDs experimentally with sev-
eral state-of-the-art histogram distance measures on seven
benchmark data sets for image classification. Among these
histogram distances, the ‘1 BRD overall generates the most
accurate results in the benchmark data sets.

ANNEX APPENDIX 1: SIMPLIFICATION OF THE BRD

In this annex, we reformulate the BRD to show that it can be
calculated in a linear time complexity. Starting from (7) in
the main text, dBRD;i is rewritten as

dBRD;iðp;qÞ ¼
Pn

j¼1 ðqj pi � qipjÞ2
ðpi þ qiÞ2

¼
Pn

j¼1

�
q2j p

2
i þ q2i p

2
j � 2qjpiqipj

�
ðpi þ qiÞ2

¼ p2i
Pn

j¼1 q
2
j þ q2i

Pn
j¼1 p

2
j � 2piqi

Pn
j¼1 qjpj

ðpi þ qiÞ2
:

(A)
According to the ‘2 normalization in (4) in the main text,

Xn
j¼1

q2j ¼ 1 and
Xn
j¼1

p2j ¼ 1: (B)

Substitution of (B) into (A) yields:

dBRD;iðp;qÞ ¼
p2i þ q2i � 2piqi

Pn
j¼1 pjqj

pi þ qið Þ2

¼ pi þ qið Þ2�piqi
�
2þ 2

Pn
j¼1 pjqj

�
pi þ qið Þ2 :

(C)

Substitution of

2 ¼
Xn
j¼1

q2j þ
Xn
j¼1

p2j ; (D)

into (C) yields:

dBRD;iðp;qÞ ¼
ðpi þ qiÞ2 � piqi

Pn
j¼1 ðpj þ qjÞ2

ðpi þ qiÞ2

¼ 1� piqi

ðpi þ qiÞ2
pþ qk k22:

(E)

Using Equation (E), the BRD dBRDðp;qÞ is written as

dBRDðp;qÞ ¼
Xn
i¼1

1� piqi

ðpi þ qiÞ2
pþ qk k22

 !

¼ n� pþ qk k22
Xn
i¼1

piqi

ðpi þ qiÞ2
:

(F)

Using (F), the BRD is calculated in a linear time complexity
OðnÞ.

ANNEX APPENDIX 2: EXPLICIT REPRESENTATION OF

HISTOGRAM DISTANCES IN SECTION 4.1

For conciseness in the notation, we define w1 ¼ 1þ uþ v

and

w2 ¼ ð1þ u2 þ v2Þ1=2: (G)

For the ‘1 distance and the x2 distance, we have

d‘1 hA;hB
� � ¼ 2

1þ w1=e
(H)

d‘1 hA;hC
� � ¼ 1

4
� 1

w1

����
����þ 1

4
� u

w1

����
����þ 1

4
� v

w1

����
����þ 1

4
(I)

dx2 hA;hB
� � ¼ 2e

eþ 2w1
(J)

dx2 hA;hC
� � ¼ 2� 4

4þ w1
� 4u

4uþ w1
� 4v

4vþ w1
: (K)

For the BRDs, we have

dBRD hA;hB
� � ¼ 4� 6w2

w2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

2 þ e2
p ; (L)

dBRD hA;hC
� � ¼ 4� 2w2 þ w1

2w2
2

� �
1

1
w2

þ 1
2

	 
2 þ u

u
w2

þ 1
2

	 
2 þ v

v
w2

þ 1
2

	 
2
0
B@

1
CA

(M)
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d‘1�BRD hA;hB
� � ¼ w1

w2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

2 þ e2
p

� w2

	 
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

2 þ e2
p
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w2

2 þ e2
p	 
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����
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dx2�BRD hA;hC
� � ¼ 2� w2ð Þ2ð u� 1ð Þ2þ v� 1ð Þ2þ1Þ

w2 2þ w2ð Þ3
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