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Abstract. We describe a working computer vision system that aids in
the identification of plant species. A user photographs an isolated leaf on
a blank background, and the system extracts the leaf shape and matches
it to the shape of leaves of known species. In a few seconds, the sys-
tem displays the top matching species, along with textual descriptions
and additional images. This system is currently in use by botanists at
the Smithsonian Institution National Museum of Natural History. The
primary contributions of this paper are: a description of a working com-
puter vision system and its user interface for an important new applica-
tion area; the introduction of three new datasets containing thousands
of single leaf images, each labeled by species and verified by botanists
at the US National Herbarium; recognition results for two of the three
leaf datasets; and descriptions throughout of practical lessons learned in
constructing this system.

1 Introduction

We have built a hand-held botanical identification system for use by botanists at
the Smithsonian Institution. Employing customized computer vision algorithms,
our system significantly speeds up the process of plant species identification.
The system requires only that the user photograph a leaf specimen, returning
within seconds images of the top matching species, along with supporting data
such as textual descriptions and high resolution type specimen images. By using
our system, a botanist in the field can quickly search entire collections of plant
species—a process that previously took hours can now be done in seconds.

To date, we have created three datasets for the system: one that provides
complete coverage of the flora of Plummers Island (an island in the Potomac
River owned by the National Park Service); a second that covers all woody
plants in published flora of the Baltimore-Washington, DC area; and a nearly
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Fig. 1. Left: A computer vision system for identifying temperate plants on the botani-
cally well-studied Plummers Island, Maryland, USA. Right: Congressman John Tanner
tries an augmented reality version of the system.

complete third dataset that covers all the trees of Central Park in NYC. The
system is currently being used by botanists at the Smithsonian to help catalogue
and monitor plant species. Figure 1 shows the system and various versions of
the user interface (UI). Although a great deal of work remains to be done in
this ongoing collaboration between computer vision researchers and scientists at
the US National Herbarium, we hope that our system will serve as a model and
possible stepping stone for future mobile systems that use computer vision-based
recognition modules as one of their key components.

1.1 Motivation

Botanists in the field are racing to capture the complexity of the Earth’s flora
before climate change and development erase their living record. To greatly
speed up the process of plant species identification, collection, and monitoring,
botanists need to have the world’s herbaria at their fingertips. Tools are needed
to make the botanical information from the world’s herbaria accessible to anyone
with a laptop or cell phone, whether in a remote jungle or in NYC’s Central Park.

Only recently has the data required to produce these tools been made avail-
able. Volumes of biological information are just now going on-line: natural history
museums have recently provided on-line access to hundreds of thousands of im-
ages of specimens, including our own work in helping to digitize the complete
Type Specimen Collection of the US National Herbarium. These massive digiti-
zation efforts could make species data accessible to all sorts of people including
non-specialists, anywhere in the world.

Yet there is a critical shortfall in all these types of natural databases: finding
a species quickly requires that the searcher know in advance the name of the
species. Computer vision algorithms can remove this obstacle, allowing a user to
search through this data using algorithms that match images of newly collected
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Photograph Leaf Segment Compute IDSC Show Top Matches

Fig. 2. A flow diagram of our plant identification system. A leaf from an unknown
species of plant is photographed by the user. The system then segments the leaf image
from its background, computes the IDSC shape representation used for matching, and
then displays the top matches, as they are computed.

specimens with images of those previously discovered and described. Without
such tools, a dichotomous key must be painfully navigated to search the many
branches and seemingly endless nodes of the taxonomic tree. The process of
identifying a single species using keys may take hours or days, even for specialists,
and is exceedingly difficult to impossible for non-scientists.

1.2 System Design and Contributions

Using our system, a botanist in the field can choose a leaf and photograph it
against a plain background. The leaf image is then compared to all possible
matches, and in a matter of seconds the botanist is shown information about
the best matching species. Figure 2 illustrates the process, with photographs of
our system in action. Figure 4 shows the performance of our system. On the
woody plants of the Baltimore-Washington, DC area (245 species) the system
returns the correct species in the top ten matches more than 97% of the time.

This paper makes several contributions. First and foremost, we describe a
complete working system for an important application that has received little
attention from the computer vision community. We hope the reader will take
from this paper an appreciation for the possible impact that computer vision can
have on the study of biodiversity. Also, while many individual components of our
system build on existing work, we have gained valuable experience getting these
pieces to work effectively together, and we want to pass these lessons on to others
in the field. Second, we describe several new datasets. Each dataset contains
thousands of images of isolated leaves, along with segmentation information
that extracts their shape. These each include leaves of about 150–250 different
species of plants, with about 30 different leaves per species. These are by far the
largest publicly available sets of leaf images and provide a unique challenge set for
researchers on shape understanding. Third, we demonstrate recognition results
for shape matching on two of these datasets (Figure 4). This can be viewed as a
high-performance baseline system for shape matching. In this context, we pose
a challenge problem to the computer vision community. We describe a set of
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performance criteria and offer to include in our deployed system code for any
algorithm that can meet these criteria.

After describing prior work in Section 2, we describe in Section 3 extensive
datasets that we have collected for this project, which we are now making pub-
licly available. In Section 4, we address a number of practical considerations
needed to get a color-based EM algorithm to effectively segment images of iso-
lated leaves. In Section 5, we summarize the shape comparison algorithm we
use. In addition, we describe a nearest-neighbor method for metric spaces that
significantly speeds up the comparisons needed for this approach. In Section 6,
we describe the hardware and UIs that we have constructed to allow the user to
navigate the search results. We also describe our ongoing work on experimental
augmented reality (AR) UIs for the system. We present a challenge problem for
the computer vision community in Section 7 and describe our plans for a future
system in Section 8.

2 Related Work

2.1 Massive Digitization Efforts

The amount of digital information available on-line has recently increased dra-
matically. For example, our group has digitally photographed (at high reso-
lution) each of the 90,000 type specimens of vascular plants in the US Na-
tional Herbarium at the Smithsonian, where the images are now available at
http://botany.si.edu/types/. Complementary efforts include those of the
New York Botanical Garden (120,000 high resolution images), the Royal Botan-
ical Gardens, Kew (50,000 images, including 35,000 images of type specimens),
and the Missouri Botanical Garden (35,000 images of plants). Recently, a con-
sortium of museums and research institutions announced the creation of the
Encyclopedia of Life (http://www.eol.org) to someday house a webpage for
each species of organism on Earth.

2.2 New Means to Access Data

Traditionally, biologists use field guides and dichotomous keys to assist in species
identification. Field guides contain pictures and textual descriptions of known
species. Dichotomous keys provide a decision tree based on features of the or-
ganism, with species at the leaves of the tree. Although valuable, neither solves
the problem of identification, as field guides are difficult to search, and di-
chotomous keys contain questions that are daunting to the non-expert and dif-
ficult even for experts to answer with certainty. Electronic versions of these
tools have been available for a long time (Pankhurst [16]; Edwards and Morse
[6]; Stevenson et al. [21]). Electronic keys have been created through char-
acter databases (e.g., Delta: http://delta-intkey.com, Lucid: http://www.
lucidcentral.org). Some of these guides are available on-line or for down-
loading onto PDAs (e.g., Heidorn [11] ), while active websites are being devel-
oped that can continually be revised and updated (e.g., http://botany.si.edu/
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pacificislandbiodiversity/hawaiianflora/index.htm). While valuable, these
electronic systems do not solve the fundamental problems faced by traditional
tools.

2.3 Visual Search

Automatic recognition systems promise to greatly enhance access by using im-
ages as search keys—this, we believe, is the real key to making any such electronic
field guide truly groundbreaking. There has been a good deal of work on identify-
ing plants, primarily using leaf shape (see Nilsback and Zisserman [15], though,
for recent work using flowers). Abbasi et al. [1] and Mokhtarian and Abbasi [14]
present a method for classifying images of chrysanthemum leaves. Saitoh and
Kaneko [18] use a neural network to classify wild flowers based on shape and
color. Wang et al. [23] use what they call the centroid-contour distance, combined
with more standard, global descriptions of shape. Ling and Jacobs [13] introduce
shape descriptions based on the Inner Distance, which they combine with shape
contexts (Belongie et al. [5]), and show that the resulting IDSC outperforms
many other approaches on two large leaf datasets. More recently, Felzenszwalb
and Schwartz [8] have presented a hierarchical shape matching algorithm that
performs even better on a publicly available leaf dataset (Söderkvist [20]). How-
ever, since this method is significantly slower, a fast version of the IDSC seems to
be the best approach currently available for a large-scale, real-time identification
system. We present experiments with this algorithm using data sets that are ten
times the size of those used in Ling and Jacobs [13].

This paper is the first complete description of our system. A preliminary ver-
sion of our system was described in the botanical journal Taxon [2] to introduce
these ideas to biologists. Work on UIs for automated species identification has
been described in [24], [25]. Many components of the current system have not
appeared in any previous publication, including our segmentation algorithm and
our use of nearest neighbor algorithms. Finally, our datasets and experiments
are described here for the first time.

3 Datasets

An important objective of our project is the development of standard, compre-
hensive datasets of images of individual leaves. Currently, the only large leaf
image dataset available to vision researchers is a collection of 15 species with 75
leaf images per species (Söderkvist [20]). This dataset is useful, but insufficient
for testing large-scale recognition algorithms needed for species identification.
The datasets that we have collected have an order of magnitude more species
and are well suited for testing the scalability of recognition algorithms. They also
provide complete coverage of species in a geographical area. We have made them
available for research use at http://herbarium.cs.columbia.edu/data.php.

Leaves were collected by field botanists covering all plant species native to a
particular region, and entered in the collections of the US National Herbarium.
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The number of leaves per species varied with availability, but averaged about
30. After collection, each leaf was flattened by pressing and photographed with
a ruler and a color chart for calibration. Each side of each leaf was photographed
with top and bottom lighting. The leaf images were then automatically resized to
a maximum side dimension of 512 pixels. Because manual processing of multiple,
large datasets is impractical, we developed systems to automatically crop images
to remove the ruler, color chart and empty space, and then to segment the images
to separate the leaf from the background, as described in the next section. The
results were inspected by hand, and a small number of erroneously processed
images were removed from the dataset. The datasets consist of the cropped
isolated leaf images, as well as the corresponding segmented binary images. To
date, we have collected the following three single leaf datasets, each representing
different regional flora with about 30 leaves per species:

Flora of Plummers Island: 5,013 leaves of 157 species. Provides complete
coverage of all vascular plant species of Plummers Island, MD, an island in
the Potomac River near Washington, DC, which has long been studied by
botanists.

Woody Plants of Baltimore-Washington, DC: 7,481 leaves of 245 species.
Provides complete coverage of all native woody plants (trees and shrubs) of
the Baltimore-Washington, DC area.

Trees of Central Park: 4,320 leaves of 144 species. Provides complete cover-
age of the trees of Central Park in New York City.

Finally, it is often critical for botanists to access more complete type spec-
imens when identifying species. When a new species is discovered, a cutting of
branches, leaves, and possibly flowers and fruit is collected. This specimen be-
comes the type specimen that is then used as the definitive representative of
the species. Type specimens are stored in herbaria around the world. As part
of this work, we have helped to complete the digitization of the complete Type
Specimen collection of vascular plants at the US National Herbarium:

US National Herbarium Type Specimen Collection: 90,000 images, cov-
ering more than one quarter of all known plant species. Each specimen
has been digitally photographed under controlled lighting to produce an
18 megapixel image. These are online in lower resolution formats at http:
//botany.si.edu/types/.

4 Segmentation

In our automatic identification system, a user photographs a leaf so that its
shape may be matched to known species. To extract leaf shape, we must begin
by segmenting the leaf from its background. While segmentation is a well-studied
and difficult problem, we can simplify it in our system by requiring the user to
photograph an isolated leaf on a plain white background. However, while we can
require users to avoid complex backgrounds and extreme lighting conditions, a
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Fig. 3. The first and third images show input to the system, to the right of each
are segmentation results. We first show a typical, clean image, and then show that
segmentation also works with more complex backgrounds.

useful segmentation algorithm must still be robust to some lighting variations
across the image and to some shadows cast by leaves.

Unfortunately, there is no single segmentation algorithm that is universally
robust and effective for off-the-shelf use. We have experimented with a number
of approaches and achieved good performance using a color-based EM algorithm
(see, e.g., Forsyth and Ponce [9]). To begin, we map each pixel to HSV color
space. Interestingly, we find that it is best to discard the hue, and represent
each pixel with saturation and value only. This is because in field tests in the
forest, we find that the light has a greenish hue that dominates the hue of an
otherwise white background. We experimented with other representations, and
colored paper backgrounds of different hues, but found that they presented some
problems in separating leaves from small shadows they cast.

Once we map each pixel to a 2D saturation-value space, we use EM to sep-
arate pixels into two groups. First, during clustering we discard all pixels near
the boundary of the image, which can be noisy. We initialize EM using K-means
clustering with k = 2. We initialize K-means by setting the background cluster to
the median of pixels near the boundary, and setting the foreground cluster to the
mean of the central pixels. Then, in order to make the segmentation real-time,
we perform EM using 5% of the image pixels. Finally, we classify all pixels using
the two resulting Gaussian distributions. The leaf was identified as the largest
connected component of the foreground pixels, excluding components that sig-
nificantly overlap all sides of the image (sometimes, due to lighting effects, the
foreground pixels consist of the leaf and a separate connected component that
forms a band around the image). In sum, to get effective results with an EM-
based approach has required careful feature selection, initialization, sampling,
and segment classification. Figure 3 shows sample results.

Although we did not rigorously evaluate competing segmentation algorithms,
we would like to informally mention that we did encounter problems when at-
tempting to apply graph-based segmentation algorithms to these images (e.g.,
Shi and Malik [19], Galun et al. [10]). One reason for this is that these algo-
rithms have a strong bias to produce compact image segments. While this is
beneficial in many situations, it can create problems with leaves, in which the
stems and small leaflets or branches are often highly non-compact. The seg-
mentation algorithm that we use goes to the other extreme, and classifies every
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pixel independently, with no shape prior, followed by the extraction of a single
connected component. It is an interesting question for future research to devise
segmentation algorithms that have shape models appropriate for objects such as
leaves that combine compact and thin, wiry structures with a great diversity of
shape.

5 Shape Matching

Our system produces an ordered list of species that are most likely to match
the shape of a query leaf. It must be able to produce comparisons quickly for
a dataset containing about 8,000 leaves from approximately 250 species. It is
useful if we can show the user some initial results within a few seconds, and the
top ten matches within a few seconds more. It is also important that we produce
the correct species within the top ten matches as often as possible, since we are
limited by screen size in displaying matches.

To perform matching, we make use of the Inner Distance Shape Context
(IDSC, Ling and Jacobs [13]), which has produced close to the best published re-
sults for leaf recognition, and the best results among those methods quick enough
to support real-time performance. IDSC samples points along the boundary of
a shape, and builds a 2D histogram descriptor at each point. This histogram
represents the distance and angle from each point to all other points, along a
path restricted to lie entirely inside the leaf shape. Given n sample points, this
produces n 2D descriptors, which can be computed in O(n3) time, using an all
pairs shortest path algorithm. Note that this can be done off-line for all leaves
in the dataset, and must be done on-line only for the query. Consequently, this
run-time is not significant.

To compare two leaves, each sample point in each shape is compared to all
points in the other shape, and matched to the most similar sample point. A
shape distance is obtained by summing the χ2 distance of this match over all
sample points in both shapes, which requires O(n2) time.

Since IDSC comparison is quadratic in the number of sample points, we
would like to use as few sample points as possible. However, IDSC performance
decreases due to aliasing if the shape is under-sampled. We can reduce aliasing
effects and boost performance by smoothing the IDSC histograms. To do this, we
compute m histograms by beginning sampling at m different, uniformly spaced
locations, and average the results. This increases the computation of IDSC for a
single shape by a factor of m. However, it does not increase the size of the final
IDSC, and so does not affect the time required to compare two shapes, which is
our dominant cost.

We use a nearest neighbor classifier in which the species containing the most
similar leaf is ranked first. Because the shape comparison algorithm does not
imbed each shape into a vector space, we use a nearest neighbor algorithm de-
signed for non-Euclidean metric spaces. Our distance does not actually obey the
triangle inequality because it allows many-to-one matching, and so it is not really
a metric (eg., all of shape A might match part of C, while B matches a different
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part of C, so A and B are both similar to C, but completely different from each
other). However, in a set of 1161 leaves, we find that the triangle inequality is
violated in only .025% of leaf triples, and these violations cause no errors in
the nearest neighbor algorithm we use, the AESA algorithm (Ruiz [17]; Vidal
[22]). In this method, we pre-compute and store the distance between all pairs
of leaves in the dataset. This requires O(N2) space and time, for a dataset of N
leaves, which is manageable for our datasets. At run time, a query is compared
to one leaf, called a pivot. Based on the distance to the pivot, we can use the
triangle inequality to place upper and lower bounds on the distance to all leaves
and all species in the dataset. We select each pivot by choosing the leaf with
the lowest current upper bound. When one species has an upper bound distance
that is less than the lower bound to any other species, we can select this as the
best match and show it to the user. Continuing this process provides an ordered
list of matching species. In comparison to a brute force search, which takes nine

2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1

Top k matches

C
or

re
ct

 r
es

ul
t r

at
e

Washington−Baltimore woody dataset

 

 

256 sample points
64x16 sample points
64 sample points

2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1

Top k matches

C
o

rr
ec

t 
re

su
lt

 r
at

e
Plummers Island dataset

 

 

256 sample points
64x16 sample points
64 sample points

Fig. 4. Experimental results for two datasets.

seconds with a dataset of 2004 leaves from 139 species, this nearest-neighbor
algorithm reduces the time required to find the ten best matching species by
a factor of 3, and reduces the time required to find the top three species by a
factor of 4.4.

We have tested our algorithm using both the Plummers Island and Baltimore-
Washington Woody Plants datasets. We perform a leave-one-out test, in which
each leaf is removed from the dataset and used as a query. Figure 4 shows per-
formance curves that indicate how often the correct species for a query is placed
among the top k matches, as k varies. In this experiment, we achieve best per-
formance using n = 256 sample points for IDSC. We reach nearly the same
performance by computing the histograms using n = 64 sample points averaged
over m = 16 starting points. The figure also shows that using n = 64 points
without smoothing significantly degrades performance. Using 64 sample points
is approximately 16 times faster than using 256 sample points. The correct an-
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swer appears in the top ten about 95%–97% of the time for woody plants of
Baltimore-Washington and somewhat less (about 90% of the time) for the flora
of Plummers Island. This is in part because shape matching is not very effec-
tive at discriminating between different species of grass (which are not woody
plants). Overall, these results demonstrate effective performance. It seems that
most errors occur for species in which the overall leaf shape is not sufficiently
distinctive. We plan to address these issues by using additional cues, such as
small scale features of the leaf margin (e.g., toothed or smooth) and the shape
of the venation (vascular structure).

6 User Interfaces and Hardware

We have developed several prototype UIs to integrate the individual pieces of the
matching system and investigate the performance of our interaction techniques
and vision algorithms in real world situations. These prototypes are the result
of collaboration with our botanist colleagues in an iterative process that has
included ethnographic study of botanical species identification and collection in
the field, user centered design, interaction technique development, and qualita-
tive and quantitative feedback and user studies. We have pursued two primary
research directions. The first focuses on existing mobile computing platforms for
ongoing botanical field studies. The second develops mobile AR systems that are
not appropriate for field use in their current form, but could provide significant
advantages as hardware and software mature.

The conceptual model we use in our mobile computing platform is an ex-
tension of existing paper field guides. The system provides access to a library
of knowledge about the physical world, and the physical leaf is the key to that
information. In the AR prototype, virtual images representing matched species
appear adjacent to the leaf in the physical world and can be manipulated directly
through tangible interaction. In this case, the conceptual model is enhanced per-
ception: the leaf anchors information embedded in the environment and accessed
through augmented reality.

6.1 Mobile Computing

Our initial prototype, LeafView (Figure 1), provides four tabbed panes for inter-
action: browse, sample, search results, and history. The browse pane provides a
zoomable UI (ZUI) (Bederson et al. [3]) with which the user can explore an entire
flora dataset. When the user photographs a leaf with the system, the image is
immediately displayed in the sample pane with contextual information including
time, date, GPS location, and collector. The segmented image is displayed next
to the captured leaf image to show the user what LeafView “sees” and provide
feedback about image quality. As results are found, they are displayed with the
original image in the search results pane. Each species result provides access to
the matched leaf, type specimens, voucher images and information about the
species in a ZUI to support detailed visual inspection and comparison, which
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Fig. 5. AR user interface viewed through a video see-through display.

is necessary when matching is imperfect. Selecting a match button associates a
given species with the newly collected specimen in the collection database. The
history pane displays a visual history of each collected leaf, along with access to
previous search results, also in a ZUI. This represents the collection trip, which
can be exported for botanical research, and provides a reference for previously
collected specimens. Making this data available improves the long term use of
the system by aiding botanists in their research.

LeafView was built with C#, MatLab, and Piccolo (Bederson, et al. [4]).
Our first versions of the hardware used a Tablet PC with a separate Wi-Fi
or Bluetooth camera and a Bluetooth WAAS GPS. However, feedback from
botanists during field trials made it clear that it would be necessary to trade
off the greater display area/processing power of the Tablet PC for the smaller
size/weight of an Ultra-Mobile PC (UMPC) to make possible regular use in the
field. We currently use a Sony VAIO VGN-UX390N, a UMPC with an integrated
camera and small touch-sensitive screen, and an external GPS.

6.2 Augmented Reality

AR can provide affordances for interaction and display that are not available in
conventional graphical UIs. This is especially true of Tangible AR (Kato et al.
[12]), in which the user manipulates physical objects that are overlaid with addi-
tional information. Tangible AR is well matched to the hands-on environmental
interaction typical of botanical field research. While current head-worn displays
and tracking cannot meet the demands of daily fieldwork, we are developing
experimental Tangible AR UIs to explore what might be practical in the future.

In one of our Tangible AR prototypes (Figure 5), a leaf is placed on a clip-
board with optical tracking markers and a hand-held marker is placed next to
the leaf to initiate a search. The results of matching are displayed alongside
the physical leaf as a set of individual leaf images representing virtual vouchers,
multifaceted representations of a leaf species that can be changed through tan-
gible gestures. As the user passes the hand-held marker over a leaf image, the
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card visually transforms into that leaf’s virtual voucher. The visual representa-
tion can be changed, through gestures such as a circular ”reeling” motion, into
images of the type specimen, entire tree, bark, or magnified view of the plant.
Inspection and comparison is thus achieved through direct spatial manipulation
of the virtual voucher—the virtual leaf in one hand and the physical leaf on the
clipboard in the other hand. To accept a match, the virtual voucher is placed
below the leaf and the system records the contextual data.

Different versions of our Tangible AR prototypes use a monoscopic Liteye-
500 display, fixed to a baseball cap, and a stereoscopic Sony LDI-D100B display,
mounted on a head-band, both of which support 800 × 600 resolution color
imagery. The system runs on a UMPC, which fits with the display electronics
into a fannypack. The markers are tracked in 6DOF using ARToolkit (Kato et
al. [12]) and ARTag (Fiala [7]), with a Creative Labs Notebook USB 2.0 camera
attached to the head-worn display.

6.3 System Evaluation

Our prototypes have been evaluated in several ways during the course of the
project. These include user studies of the AR system, field tests on Plummers
Island, and expert feedback, building on previous work (White et al. [24]). In
May 2007, both LeafView and a Tangible AR prototype were demonstrated
and used to identify plants during the National Geographic BioBlitz in Rock
Creek Park, Washington, DC, a 24-hour species inventory. Hundreds of people,
from professional botanists to amateur naturalists, school children to congress-
men, have tried both systems. While we have focused on supporting professional
botanists, people from a diversity of backgrounds and interests have provided
valuable feedback for the design of future versions.

7 Challenge Problem for Computer Vision

One goal of our project is to provide datasets that can serve as a challenge
problem for computer vision. While the immediate application of such datasets
is the identification of plant species, the datasets also provide a rich source of
data for a number of general 2D and silhouette recognition algorithms.

In particular, our website includes three image datasets covering more than
500 plant species, with more than 30 leaves per species on average. Algorithms
for recognition can be tested in a controlled fashion via leave-one-out tests, where
the algorithms can train on all but one of the leaf images for each species and test
on the one that has been removed. The web site also contains separate training
and test datasets in order to make fair comparisons. Our IDSC code can also be
obtained there, and other researchers can submit code and performance curves,
which we will post. We hope this will pose a challenge for the community, to
find the best algorithms for recognition in this domain.

Note that our system architecture for the electronic field guide is modular,
so that we can (and will, if given permission) directly use the best performing
methods for identification, broadening the impact of that work.
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8 Future Plans

To date, we have focused on three regional floras. Yet, our goal is to expand the
coverage of our system in temperate climates to include all vascular plants of
the continental U.S. Other than the efforts involved in collecting the single leaf
datasets, there is nothing that would prevent us from building a system for the
U.S. flora. The visual search component of the system scales well: search can
always be limited to consider only those species likely to be found in the current
location, as directed by GPS.

In addition, we have begun to expand into the neotropics. The Smithsonian
Center for Tropical Forest Science has set up twenty 50-hectare plots in tropical
ecosystems around the world to monitor the changing demography of tropical
forests. We aim to develop versions of the system for three neotropical floras:
Barro Colorado Island, Panama; Yasuni National Park, Ecuador; and the Ama-
zon River Basin in Brazil. This domain demands algorithms that not only con-
sider leaf shape, but also venation (i.e., the leaf’s vascular structure). Initial
results are quite promising, but we have not yet developed a working system.

Finally, we have developed a prototype web-based, mobile phone version of
our system, allowing anyone with a mobile phone equipped with a camera and
browser to photograph leaves and submit them to a server version of our system
for identification. We hope to develop a touch-based version on an iPhone or
Android-based device in the near future. We feel that it should soon be possible
to create a mobile phone-based system that covers the entire U.S., usable by the
general population.
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