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Abstract

In this paper we study face recognition across ages within
a real passport photo verification task. First, we propose
using the gradient orientation pyramid for this task. Dis-
carding the gradient magnitude and utilizing hierarchical
techniques, we found that the new descriptor yields a robust
and discriminative representation. With the proposed de- ® ® 0 P
scriptor, we model face verification as a two-class problem Figure 1. Typical images with age differences.  Source
and use a support vector machine as a classifier. The ap-images are  from the FG-NET Aging Database,
proach is applied to two passport data sets containing more http://sting.cycollege.ac.cy/ alanitis/fgnetaging/index.htm.

than 1,800 image pairs from each person with large age

differences. Although simple, our approach outperforms

previous|y tested Bayesian technique and other descriptorS,StUdied, which is mainly due to the lack of suitable data sets.
including the intensity difference and gradient with magni- In this paper we study the problem of face recognition
tude. In addition, it works as well as two commercial sys- across ages and how age gaps affect face recognition tasks.
tems. Second, for the first time, we empirically study how The study is applied to passport photo verification tasks that
age differences affect recognition performance. Our exper-involve more than 1,800 image pairs, where each pair is the
iments show that, although the aging process adds difficultysame person taken at different years.

to the recognition task, it does not surpass illumination or  First, we are interested in finding robust face descrip-
expression as a confounding factor. tions especially to lighting and aging. Gradient orientation
has been shown to be insensitive to lighting change under a
Lambertian assumption and has been applied to face recog-
1. Introduction nition [5]. Based on previous study of craniofacial growth
[18] and skin color models§, 22], we conjecture that the
e _gradient direction can be used to build descriptors that are
a”‘?' has_, many appllcatlons, S,UCh as passporF photo Ver'f'"lnsensitive to the aging process as well. Furthermore, a
cathn, image retrieval, surveillance, etc. This is a ch?‘l' pyramid technique is used for hierarchical modeling. With
!englng task becaqse hu_man fa_ces can vary a lot over timeyis idea, we propose using tigeadient orientation pyra-
in many aspects, including facial texture (e.g. wrinkles), iy GOP) for robust face representation. Then, given a
shape (e.g.. .welght Qa'”)' facial .hfsu_r, presence of glassesface image pair, we use the cosines between gradient ori-
e_tc. In addition, the image acquisition Condmons and en- entations at all scales to build the “difference” between the
wronmgnt ofFen qndgrgo large changes, which can causepair_ Finally, the “difference” is combined with an SVM
non-unllform |II|u_m|nat|on g;:cjj_ircale changes. F?lg;hows __for face verification tasks in a way similar ta74]. We ap-
several typical images with different age gaps. Despite itS ;04 the proposed approach for passport verification tasks
importance, recognition across ages has been relatively Iesgnd tested it on two passport image datasets with large age
*The work was done when the first author was with University of Mary- diﬁerences- Promising results are Opserved in pomparison
land College Park and University of California Los Angeles. with several other approaches, including three different rep-
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Face recognition across ages is an important problem




resentations with the same SVM-based framework (inten-is different in that we use the gradient orientation pyramid
sity differencellL7], gradient with magnitude, gradient ori- instead of intensity differenced$, [17] or the intensity it-
entation), the Bayesian facg&d], and two commercial face  self [9] as a face description. Furthermore, we are more
recognition products. It is also worth noting that our ap- interested in passport photos with age differences.

proach is rather simple in comparison to its competitors. Image gradients are widely used for feature building and
Second, we study how recognition performance variesimage representation, e.gi13 6, [25. In most of these
with increasing time lapses between images. This is the firstworks, the gradient magnitude information is included (e.g.
such study, to our knowledge, and it uses the largest datasefp build a weighted histogram). The direction of image gra-
reported in the literature. Surprisingly, we found that the dient has been proposed for lighting insensitive recognition
added difficulty of recognition produced by age gaps be- (e.g. B]) and was shown to be insensitive to changes in
comes saturated after the gap is larger than four years, folighting direction under a Lambertian assumpti&h [Re-
gaps of up to ten years. This is observed with all different cently, Hammond and Simoncellf][ proposed a nonlinear
image representations that have been tested. image representation using only the orientation informa-
The rest of the paper is organized as follow. S2dis-  tjon. Inspired by these works, we propose using the gradient
cusses related work. After that, the framework for face orientation for robust face representation with age variation.
verification using a support vector machine is described in To the best of our knowledge, it is the first time the gradient
Seci3. Then, we introduce the gradient orientation pyramid direction is combined with SVM for face verification prob-
in Sec/4. Sec.5 describes our experiments on two pass- |ems. Our experiments show that by discarding magnitude
port image datasets involving large age separations.@ec. information, the gradient orientation achieves significantly
presents our empirical study of how age gaps affect recogni-etter recognition performance. We also propose using hi-
tion algorithms. SecZ gives a preliminary study on the re-  erarchical structure to further improve discriminability.
lation between aging and gradient orientation. Finally, Sec. 5, work also relates to work on skin appearaitie It

g concludes. is known that melanin and hemoglobin are the two most im-
| K portant factors that determine human skin color. Tsumura
2. Related Wor et al. 22] used independent component analysis (ICA) to

Face recognition and detection has been widely studiegseparate the effect of melanin and hemoglobin as two inde-
for several decades. A lot of work has been done to han-Pendent components from skin color. They showed that the
dle the problem under different conditions, including light- !°garithm of skin color can be decomposed as linear com-
ing, pose, expression, etc. A thorough survey can be foundpinations (_)f two components correspondm_g to me_zlanln and
in [26]. The aging process and its effect on face analy- hemoglobin respectively. We show that this fact is closely
sis, which we are interested in, has recently attracted re_relgted to the insensitivity of gradient orientation across the
search effort. Most work has focused on modelling the ag- 89/Ng Process.
ing processZ(], age estimationl0,/12,119,127], and simu-
lation [11,121]. In comparison, face verification across ages
is far less studied9)].

Ramanathan and Chellapi] adapted the probabilis- 3.1, Task Description
tic eigenspace framework §] for face identification across
age progression, which is most closely related to our work. ~ Passport photo verification is important in the process
Instead of using a whole face, only a half face (called of passport renewal and related face authentication appli-
a PointFive face) is used to alleviate the non-uniform il- cations. For example, when a person submits a new photo
lumination problem. Then, eigenspace techniques and &for renewal, the ideal system can automatically tell whether
Bayesian model are combined to capture the intra-personahe is an imposter by comparing the new photo to previous
and extra-personal image differences. Targeting the saméhotos that were usually taken years before.
task, our work differs from their work in both the represen- A common way to evaluate verification uses two criteria:
tation (we use gradient orientation pyramids) and the clas-the rate of correct rejection on imposter images (correct re-
sification frameworks (we use SVM). ject rate) and the rate of correct acceptance (correct accept

Modelling face verification as a two-class classification rate) on true images. These two rates conflict although we
problem is not new. Moghaddam et dl5] used a Bayesian  want both rates to be as high as possible. In practice, for
framework for the intra-personal and extra-personal facethe passport verification task, the correct reject rate is most
classification. Phillips17] used SVM for face recognition  important because rejected images will be examined by a
problems and observed good results on the FERET datasettuman. For example, we can fix such a rate at a high level
compared to component based approaches. Jonsson et de.g. 99%) while making the correct acceptance rate as high
[9] used SVM for face authentication problems. Our work as possible, which measures the human labor that is saved.

3. Problem Formulation



3.2. Classification Framework

We model face verification as a two-class classification
problem [L5,17,19]. Given an input image paif, and I,
the task is to assign the pair as eiti@ra-personal(i.e. I;

andl from the sam(? peqple) G!xtra-p(?:‘rsona.(l.e. I and Figure 2.Computation of a GOP from an input image. Note: 1) In
I from the different individuals). In this section we briefly o right figure, the gradient orientations at “flat” regions are ex-

descr_ibe the fram_ework of using a support vector machinecjyded. 2) The right figure is made brighter for better illustration.
for this task. Details about support vector machines can be

Tuput Image Pyramid Gradient Orientations

found in 24]. ] o
Given any image paitl;, I,), it is first mapped it onto ~ ([13 ©]). In these works, the gradient directions were
the feature space. Formally, we have= F(I;,I,) € R, weighted by gradient magnitudes. In contrast, inspired by

wherex is the feature vector extracted from the image pair [2]; we discard magnitude information and use only orien-
(I, I,) through the feature extraction function (functional) tations, which demonstrates significant improvement in our
F(.,.), andR is thed-dimensional feature space. experiments (Se&). Furthermore, the gradient directions

Then the support vector machine is used to divide the at different scales are combined to make a hierarchical rep-
feature space into two classes, one for intra-personal paird€sentation. o _
and the other for extra-personal pairs. Using the same termi-  Given an imagé (p), wherep = (z, y) indicates pixel
nology as inlL7], we denote the separating boundary with locations, we first define the pyramid df as P(I) =

the following equation {1(p;0)}5—0 as
o v K (s _ I(p;0) = I(p)
2 el (sx) +b= A D Ipio) = Upo-DEe@I L o=1s O

whereN; is the number of support vectors angis thei- where®(p) is the Gaussian kernel (0.5 is used as the stan-
th support vector.A is used to trade o_ff thg correct reject  yardq deviation in our experiments), denotes half size
rate and correct accept rate as described in[Sie& (., .) downsampling, and is the number of pyramid layers. Note

is the kernel function that provides SVM with non-linear .+ in 13) the notatiorr is used both for the original image
abilities. The RBF kernel is chosen for our task due to its and the images at different scales for convenience.

effectiveness and efficiency. The RBF kernel is defined as Then, the gradient orientation at each seals defined

K (X1,X2) = exp(—7 * [x1 — Xa?) @) by its normalized gradient vectors at each pixel.
wherey is a parameter determining the size of RBF kernels 9(I(p;0)) =V(I(p,0)) / [V (p,0))| 4)
(v = 4 is used in our experiments). Naturally, thegradient orientation pyramidGOP) ofI, is

_ _ _ ] defined agi(I) = {g9(I(p,0))}5_,. Fig.2illustrates the
4. Gradient Orientation Pyramid computation of a GOP from an input image.

Thgre is one question Ieft.opt.an in the preyious ;ectipn: 4.2. Differences Between GOPs
what isF(.,.)? A natural choice is to use the intensity dif-
ference betweef, and/,, which is calleddifference space Given an image pai(/y, I>) and corresponding GOPs
in [15] and also has been used ifg[[17). With an appro-  (G(11),G(I2)), the feature vectox = F (1, I2) is com-
priate normalization scheme, the intensity difference can beputed as the concatenation of the cosines of the difference
made robust to affine lighting changes. However, the affine between gradient orientations at each pixel and all scales.
lighting model is not always sufficient for face images, es- The computation can be efficiently achieved through the in-
pecially for images taken at times separated by years. In-ner product of the corresponding entries of GOP, i.e., for
stead, to alleviate this problem, we propose using the cosinglixel p at scales, it is computed as
of gradient orientations as features of image pairs, because ) N ) )
gradient orientation is known to be insensitive to lighting FI(p;0), 2(p3 0)) = 9(1(p; 0)) - 9(1a(p3 ) (5)
changeld]. In addition, we organize the gradient orienta- The cosine values are organized into a feature vects

tion in a hierarchical fashion, which further improves its -
discriminability. X=F(h,L)= (..., f(Li(p;0), I2(p;0)), ...) (6)

wherep is organized in lexicographic order amdin in-
creasing order.

Our proposed features are partly motivated by recent We summarize the advantages of using GOPs for face
work using gradient information for object representations verification tasks as follow.

4.1. Gradient Orientation Pyramid



Table 1.Passport datasets for identification tasks. “Std.” is short

e GOP is insensitive to illumination changés].[ As a e
for standard deviation.

result, no normalization is needed on the input images. Dataset | # intra| mean agéstd. agé mean | std
pairs age diff.| age diff.

e The pyramid technique provides a natural way to per- | Passport | 452 39 10 4.27 2.9

form face comparison at different scales. Passport || 1824 48 14.7 | 7.45 3.2

Passport | Passport Il

e The inner product between normalized gradients lies
in a finite range [ 1, 1]) that automatically limits the
effect of outliers.
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In the following, we use SVM+GOP to indicate the pro-

posed approach Figure 3.Distribution of age differences in the passport image

databases. Left: Passport I. Right: Passport I1.

5. Verification Experiments 5.2. Methods

5.1. Passport Datasets We compared the following approaches. 1) SVM+GOP:
the approach proposed in this paper. 2) SVM+GO: this is
We tested the proposed approach on two real passporjmilar to SVM+GOP, except that only the gradient orien-
image datasets, which we will refer to as Passport | andtation (GO) at the finest scale is used without a hierarchical
Passport Il respectively. Passport | is the dataset used inepresentation. 3) SVM+G: this one is similar to SYM+GO,
[19). It contains 452 intra-personal image pairs (several du- except that the gradient (G) itself is used instead of gra-
plicate pairs were removed) and 2251 randomly generatedgient orientation. It can also be viewed as weighting gra-
extra-personal image pairs. Passport Il contains 1824 intra-gient orientations with gradient magnitudes. 4) SVM-+diff
personal image pairs and 9492 randomly generated extraj17]. As in [17], we use the differences of normalized im-
personal image pairs. Images in both datasets are scannegyes as input features combined with SVM. 5) GO: this
passport images. They are in general frontal images withjs the method using gradient orientation proposedSjn [
small pose variations. The lighting condition varies, and 6) Bayesian+PFFI[C]. This is the approach combining
can be non-uniform and saturated. The age differences beBayesian frameworKI§] and PointFive Face (PFE1Y. In
tween image pairs are summarized in Tahlé shows that  aqdition, two commercial systems are tested on the datasets,
both datasets have significant age gaps for intra-personalyhich we will name Vendor A and VendoiB
images. Fig3 further shows the distribution of age differ-  The first approaches use exactly the same configurations
ences in the datasets. Intuitively, Passport Il is more chal-ang the same SVM framework, but different representa-
lenging than Passport | for verification tasks because of thetions. The purpose is to study the superiority of the pro-
relatively larger age differences. Furthermore, we observedposed GOP representations. The other four approaches are
that the image resolution change in Passport Il is also largergifferent from our method in both representations and clas-

than that in Passport . sification frameworks.
In our experiments (SVM-based approaches), the images _ )
are preprocessed using the same scheme a8JinThis in- 5.3. Experimental Evaluation

cludes manual eye location labelling, alignment by eyes and
cropping with an elliptic region. Image sizes are reduced to
96 x 84 for Passport | and@2 x 63 for Passport Il. Example

images at these resolution are shown in Bjgvhere we can _ )
also see the “disappearance” of wrinkles. While relatively ~— ~pp — # Correct rejected extra-personal pairs

For verification tasks, the correct reject rate (CRR) and
the correct acceptance rate (CAR) are two critical criteria,
which are defined as

larger resolutions could be used to make use of more infor- oan? cor;#e}:?tgtl:gégtaeg?r{tsrgl—qgéps%Lsal pairs ()
mation that is still insensitive to wrinkles (e.g60 x 140 = #{otal intra-personal pairs

as in Fig.8 (c)), we run out of memory with them in the _ ) )
current Matlab-based implementation. The performance of algorithms is evaluated using the

CRR-CAR curves that are usually created by varying some
classifier parameters. As mentioned in S&d, although

both rates are desired to be as high as possible, the more
important is the performance when CRR is high.

To alleviate the alignment problem, when comparing two
GOPs, we tried different alignments with small shiftings
(two pixels). In our experiments it helped to improve the
performance by around 0.5% (equal error rate). A similar
technique is used biif]. LAnonymous due to agreements with the companies.




We used three-fold cross validation in our experiments. Passport |
For each experiment, the CRR-CAR curve is created by ad- =3
justing parameteA in (1). The total performance is evalu-
ated as the average of the output CRR-CAR curves of three
folds. For Vendor A and B, all original color images are
input to their systems. To compare with Bayesian+PFF, we
also test SYM+GOP in the experimental setup according to

oesh
0.9F
0.85|- ’
0.8

0.75

correct rejection rate (true alarm)

[19], i.e., we use 200 positive and 200 negative pairs as a oy TETSSMW
training set. 065+ SUM+G

Fig./4 and Fig/5 show the CRR-CAR curves for the ex- ol LM T SMieo, v
periments. In addition, Tablists the equal error rates (i.e. oss[|” " " xz:gg;g '. |
when CRR=CAR). There are several observations from the 0s = - - e a— ! ]
experimental results. correct acceptance rate (true positive)

First, among the SVM-based approaches, GOP works Passport Il
the best. The gradient direction obviously plays a main role B S il T

in GOP’s excellent performance, since both SVM+GOP and i s T

SVM+GO largely outperform SVM+G, which includes the

gradient magnitude information. In comparison, the use of
a hierarchical structure in GOP further improves upon GO.
Later we will show that the improvement is more obvious

0.9r

0.85

0.8

0.75

correct rejection rate (true alarm)

when larger image resolution is used. o7t _—g—_g\?Mmiﬁ “'!
Second, SVM+GO largely outperforms GO. Note that, 0651+ SUM+G ;
for face recognition, SVM+diff is previously used ifif] ol TSSO, v
and GO is previously used ifb]. This shows that our o055 = = = Vendor A &
method, as a combination of these two, greatly improves ol = VendorB | | ‘ L
both of them. o c%?rect acce%Zance rateogrue positi?/'g) '

Third, SVM+GOP outperforms the Bayesian approach Figure 4.CRR-CAR curves for three-fold cross validation exper-

[19] on both datasets. In addition, from Figit is obvious  iments. Top: on Passport I. Bottom: on Passport II. This figure is
that SVM+GOP is more suitable for passport verification petter viewed in color.

tasks because it performs much better at a high correct re-

ject rate, which is desired as mentioned in &et. Further- 2 Passport! . Passport I

more, given an image pair, our approach does not require ;

the information of which one is older, which is used in theg ..

Bayesian approach as a prior. F
Fourth, on Passport I, SVM+GOP performs similarly tog osf

Vendor A while much better than Vendor B. While on Pass- [amecor ] [aweeer ]

port Il, SVM+GOP outperforms Vendor A but performs OBVPFFp g B s e

worse than Vendor B (Interestlrlgly, the rgnks of Vendor Figure 5.CRR-CAR curves for experiments with 200 intra- and

A and Vendor_ B alternate). This observation shows that, ,q extra-pairs for training.

though very simple, our approach performs close to com-

mercial systems, which combine many additional heuristic

techniques and are well tuned. Furthermore, only low reSO-Study the effect of the pyramid, we conducted experiments

lution gray images are used in our approach, while the orig- comparing SVM+GOP and SVM+GO on larger resolution

inal color images are used in both commercial systems.  jmages. We used randomly chosen subsets of Passport |
In addition to the verification experiments mentioned and Passport Il due to memory limitations. Specifically, for

above, another two experiments have been done to furthePassport I, one third of the image pairs are used with the

understand the proposed approach. One of them studies thegize207 x 180. Note that the wrinkle effect at this resolution

hierarchical information captured by GOP. The other tries to may still exist (e.g. Fig8 (b)), but we focus on the study of

find irrelevant features on the face that are related to wrin- hierarchical information instead. For Passport II, one fourth

kles to some degree. of the image pairs are used with the siZ# x 140 (wrin-

Study on Hierarchical Information. As mentioned above, kles almost disappear at this resolution, e.g. Bi@.)). The

the improvement from adding hierarchical information is improvement of GOP from GO for different resolutions are

not significant due to the limited image sizes. To further summarized in Tabl&. The table shows that the improve-

ct rejecti

correct rejection rate




Table 2.Equal error rates. Left table: experiments of three-fold cross validation. Right table: experiments using 200 intra- and 200
extra-pairs as training, as ia9].

GO [5] |SVM+diff [17]| SVM+G | SVM+GO| SVM+GOP| Vendor A| Vendor B| | SVM+GOP| Bayesian/L9]
Pass. || 17.6% 16.5% 17.8% 9.5% 8.9% 9.5% 11.5% 5.1% 8.5%
Pass. Il 20.7% 18.8% 17.4% | 12.0% 11.2% 13.5% 8.0% 10.8% 12.5%

ment of using pyramid is larger when higher resolution im-

o
IS
1

ages are used. This validates including hierarchical infor- ol e Sy
mation in the GOP representation. - % - SVM+GO
0.3 SVM+GOP

o
N
G

Table 3.The improvement of GOP from GO. The content inside
each cell is the difference of equal error rates from GO to GOP.

| Reso]96 x 84[207 x 180|[ Reso.| 160 x 140[ 72 x 63|
\Pass.l 0.6% 1.9% HPass. Il 0.8% 1.6% \

o
s
@

equal error rate (eer)
°
N

o
[

o
o
@

Study of Irrelevant Wrinkle Related Features. This ex-
periment provides a preliminary study of how wrinkle re- L . 7 10

lated regions affect the recognition system. For this task, age gap

we use two feature masks (Fif). One is the usual el- Figure 7.Effect of aging on recognition performance. The curves
lipse mask. The second one removed the forehead and'® shifted a bit along the axis for better illustration.

cheeks, which are known to carry much wrinkle informa-
tion [4] but little shape information. We tested SVM+GO

and SVM+diff with both masks. The performance curves
shown in Figi6 show that there is no performance drop by

8 years, and 9 to 11 years. The goal is to test the recogni-
tion performance for different groups. Specifically, we use
the average equal error rates as a criterion. For each group,

rcTrmo;lnlg tf;ﬁir\:vrl?klienre?lcirr:s. T:"S iSLr']ggeOS:si ttrr]nailt hStVrrl:/l 'Sn 80 intra pairs and 80 extra pairs are randomly selected as
aiready learning to ighore these regions. 9 ca training set. Testing set are created similarly but with 15

Fhat the noise added by wrinkles balances whatever pOSItIVelntra pairs and 15 extra pairs. There is no overlap between
information is there.

training and testing sets. After that, four SVM-based ap-
proaches are tested on the data sets and equal error rates are
recorded. To reduce the variance caused by the lack of train-
ing samples, 20 different training/testing sets are generated
and the average equal error rates are recorded. The above
experiments have been run 50 times with randomly chosen
training/testing sets (i.e50 x 20 training/testing sets). Fi-

-

o
©

o
®

o
3

o
o

correct rejection rate (true alarm)
4
@

T St . nally, the mean and standard deviation of equal error rates
0.4 . v R
T Shmcores ; are summarized to evaluate the performance.
0.3 . .
#% % orect acceptance rate (rue positve) Fig.7 shows the performance of the experiments on all

Figure 6.Experiment on irrelevant wrinkle region selection. Left: four groups. From the plots, we found that faces separated
two masks with resolutiofi2 x 63 (enlarged for better illustration). by more than a year are more difficult than those within
Right: performance curves, where “+FS” means with feature se- one year. What surprised us is that the difficulty becomes
lection masks (the bottom one on the left). saturated after the age gap is larger than four years. This
phenomenon is observed on all four different representa-
tions tested in the experiments. It shows that, when the age
6. Effects of Age Gaps on Recognition Perfor-  gap is larger than four years (up to ten years), the difficulty
mance added by aging is not a dominant factor compared to other
nuisance factors such as illumination, expression, etc.
We are interested in how age differences affect the per-
formance of machine recognitio_n algorith_ms_. Taking ad- 7. Gradient Orientation Under Aging Progress
vantage of the large number of image pairs in Passport I,
an empirical study of this problem is conducted. As shown in Sec5, gradient orientation yields a very ro-
First, intra-personal image pairs are grouped into four bust representation for faces undergoing aging. Though we
classes according to their age gaps. Specifically, these ardave not developed rigorous theoretic support for this, we
groups with ages gaps from 0 to 2 years, 3 to 5 years, 6 togive some intuitive explanations of why the gradient orien-



18 i(d) i(e)

Figure 8.Perception of wrinkles at different resolution (in pixels)
of a face image at age 50. The resolutions in (b-e) will be used in
our experiments (see Sé&). (a) Original image, height=347. (b)
Height=207. (c) Height=160. (d) Height=96. (e) Height=72.

tation is robust to aging for face recognition tasks.

The change of skin appearance over time is very compli-
cated |B]. Discriminative invariance to aging is very diffi-
cult to achieve (if it exists). Focusing on aging problem and

e Wrinkles are hardly perceptible for images with low
resolution [LO], which are used for most recognition
tasks. For example, the wrinkles on the face in Big.
“disappear” when the resolutions decreases.

The distribution of wrinkles on human faces is known
to be nonhomogeneous. For example, Boissieux et
al. [4] summarized eight generic wrinkle maps from
the qualitative data from L'Oreal. From the studies in
cosmetics, we know that wrinkles appear frequently
on forehead and cheeks, which are not important for
face recognition. This means that most regions with
heavy wrinkles can be ignored by face recognition al-
gorithms, either through manually adjusted masks or
by automatic feature selection (e.g. through SVM).
One support comes from the experiment in Seclt
compares face recognition with forehead and cheeks to
recognition without them, and observes no significant
difference in recognition performance.

As a result, we can roughly write(x, ¢) ~ n(z) and sim-

based on the observation from our datasets, we made folplify (8) as’
lowing assumptions. 1) We assume that all faces are frontal

and there is no alignment problem. With this assumption,
we can ignore viewpoint issues in image formation. 2) Re-

flectance can be modelled as Lambertian, which has beeri_a

widely and successfully done for face recognition tasks. 3)
We are interested in faces with age ranging from 20 to 70.

All these assumptions are roughly satisfied by the passpor

photos used in our experiments.

With the above assumptions, we model a human face as

a surface(x,t) = {n(x,t), p(x,t) : x € Q} described by
surface normalsi(x,t) and albedog(x,t) at age or time
t > 0. For recognition tasks) C R? is the shared sup-

t

I(x,t) = p(x,t){n(x),1(t)) 9)

The gradient orientation is known to be robust under the
mbertian lighting modeld, 2], which is true if we as-
sumep is independent of. Alternatively, if p(x,t) is a
homogeneous scaling function acresthen the gradient of
1(x,t) is invariant across. Specifically, we wanp to have
the following decomposition

e t>0.

p(X,t) = a(t)po(X) (10)

wherea(t) is the positive scaling function angh(x) is a

port for both the face surface and the corresponding image‘reference” albedo (equivalentlyl() can also be written

plane. With the Lambertian model, the imafex, ¢) of a
face{(x, t) is generated by the following formula

I(X,t):p(X,t)<n(X,t>,l(t)> (8)

wherel(t) = 3. 1;(t) € R®, andi;(t) are different lighting
sources. Next, we will discuss howand p change over
time with respect to recognition tasks.

For the task of face recognition, we can roughly treat the
surface normah(x,t) as consistent over age gdyp (e.g
At = 10 in our experiments). This is based on the follow-
ing arguments. First, previous study of craniofacial growth

e, t>0

[18] has shown that face profiles (e.g. boundary shapes, eye

locations) are relatively stable for people older than 18 year.

asp(X,t) = a(t — to)p(X, to))-

Next we will show the support forlQ) from studies of
skin optics. Studies in skin optic8][show that skin color is
mainly determined by two kind of chromophores, melanin
and hemoglobin. Tsumura et &27] used ICA to separate
the effect of melanin and hemoglobin as two independent
components of the logarithm of skin color. By adjusting the
amount of the two components, their approach is success-
fully applied to skin color synthesis task&3]. With their
model, the skin coloc (x) € R® can be derived &s

c(x,t) = cPDeihe, (11)

This motivates assumption 3. Second, it has been shownVNereci, ¢ € R’ correspond to melanin and hemoglobin

that wrinkles are one of the most important factors for the
visual perception of agd]. In fact, the width and depth of
wrinkles grow roughly linearly with agel]. While wrin-

kles do affect the surface normals, the effects are largely

reduced due to following facts.

respectively.p andq correspond to the amount of associ-
ated pigments at timeéand are mutually independent.s
denotes a constant shift. As a result, the change of skin

2Strictly speaking, we should us® C € in (9) for feature selection.
SIn (11) and [L2) the product between vectors are element wise.
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