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Abstract

In this paper we study face recognition across ages within
a real passport photo verification task. First, we propose
using the gradient orientation pyramid for this task. Dis-
carding the gradient magnitude and utilizing hierarchical
techniques, we found that the new descriptor yields a robust
and discriminative representation. With the proposed de-
scriptor, we model face verification as a two-class problem
and use a support vector machine as a classifier. The ap-
proach is applied to two passport data sets containing more
than 1,800 image pairs from each person with large age
differences. Although simple, our approach outperforms
previously tested Bayesian technique and other descriptors,
including the intensity difference and gradient with magni-
tude. In addition, it works as well as two commercial sys-
tems. Second, for the first time, we empirically study how
age differences affect recognition performance. Our exper-
iments show that, although the aging process adds difficulty
to the recognition task, it does not surpass illumination or
expression as a confounding factor.

1. Introduction

Face recognition across ages is an important problem
and has many applications, such as passport photo verifi-
cation, image retrieval, surveillance, etc. This is a chal-
lenging task because human faces can vary a lot over time
in many aspects, including facial texture (e.g. wrinkles),
shape (e.g. weight gain), facial hair, presence of glasses,
etc. In addition, the image acquisition conditions and en-
vironment often undergo large changes, which can cause
non-uniform illumination and scale changes. Fig.1 shows
several typical images with different age gaps. Despite its
importance, recognition across ages has been relatively less

∗The work was done when the first author was with University of Mary-
land College Park and University of California Los Angeles.

Figure 1. Typical images with age differences. Source
images are from the FG-NET Aging Database,
http://sting.cycollege.ac.cy/˜alanitis/fgnetaging/index.htm.

studied, which is mainly due to the lack of suitable data sets.

In this paper we study the problem of face recognition
across ages and how age gaps affect face recognition tasks.
The study is applied to passport photo verification tasks that
involve more than 1,800 image pairs, where each pair is the
same person taken at different years.

First, we are interested in finding robust face descrip-
tions especially to lighting and aging. Gradient orientation
has been shown to be insensitive to lighting change under a
Lambertian assumption and has been applied to face recog-
nition [5]. Based on previous study of craniofacial growth
[18] and skin color models [8, 22], we conjecture that the
gradient direction can be used to build descriptors that are
insensitive to the aging process as well. Furthermore, a
pyramid technique is used for hierarchical modeling. With
this idea, we propose using thegradient orientation pyra-
mid (GOP) for robust face representation. Then, given a
face image pair, we use the cosines between gradient ori-
entations at all scales to build the “difference” between the
pair. Finally, the “difference” is combined with an SVM
for face verification tasks in a way similar to [17]. We ap-
plied the proposed approach for passport verification tasks
and tested it on two passport image datasets with large age
differences. Promising results are observed in comparison
with several other approaches, including three different rep-
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resentations with the same SVM-based framework (inten-
sity difference [17], gradient with magnitude, gradient ori-
entation), the Bayesian face [19], and two commercial face
recognition products. It is also worth noting that our ap-
proach is rather simple in comparison to its competitors.

Second, we study how recognition performance varies
with increasing time lapses between images. This is the first
such study, to our knowledge, and it uses the largest dataset
reported in the literature. Surprisingly, we found that the
added difficulty of recognition produced by age gaps be-
comes saturated after the gap is larger than four years, for
gaps of up to ten years. This is observed with all different
image representations that have been tested.

The rest of the paper is organized as follow. Sec.2 dis-
cusses related work. After that, the framework for face
verification using a support vector machine is described in
Sec.3. Then, we introduce the gradient orientation pyramid
in Sec.4. Sec.5 describes our experiments on two pass-
port image datasets involving large age separations. Sec.6
presents our empirical study of how age gaps affect recogni-
tion algorithms. Sec.7 gives a preliminary study on the re-
lation between aging and gradient orientation. Finally, Sec.
8 concludes.

2. Related Work

Face recognition and detection has been widely studied
for several decades. A lot of work has been done to han-
dle the problem under different conditions, including light-
ing, pose, expression, etc. A thorough survey can be found
in [26]. The aging process and its effect on face analy-
sis, which we are interested in, has recently attracted re-
search effort. Most work has focused on modelling the ag-
ing process [20], age estimation [10, 12, 19, 27], and simu-
lation [11, 21]. In comparison, face verification across ages
is far less studied [19].

Ramanathan and Chellappa [19] adapted the probabilis-
tic eigenspace framework [16] for face identification across
age progression, which is most closely related to our work.
Instead of using a whole face, only a half face (called
a PointFive face) is used to alleviate the non-uniform il-
lumination problem. Then, eigenspace techniques and a
Bayesian model are combined to capture the intra-personal
and extra-personal image differences. Targeting the same
task, our work differs from their work in both the represen-
tation (we use gradient orientation pyramids) and the clas-
sification frameworks (we use SVM).

Modelling face verification as a two-class classification
problem is not new. Moghaddam et al. [15] used a Bayesian
framework for the intra-personal and extra-personal face
classification. Phillips [17] used SVM for face recognition
problems and observed good results on the FERET dataset
compared to component based approaches. Jonsson et al.
[9] used SVM for face authentication problems. Our work

is different in that we use the gradient orientation pyramid
instead of intensity differences [15, 17] or the intensity it-
self [9] as a face description. Furthermore, we are more
interested in passport photos with age differences.

Image gradients are widely used for feature building and
image representation, e.g. [13, 6, 25]. In most of these
works, the gradient magnitude information is included (e.g.
to build a weighted histogram). The direction of image gra-
dient has been proposed for lighting insensitive recognition
(e.g. [3]) and was shown to be insensitive to changes in
lighting direction under a Lambertian assumption [5]. Re-
cently, Hammond and Simoncelli [7] proposed a nonlinear
image representation using only the orientation informa-
tion. Inspired by these works, we propose using the gradient
orientation for robust face representation with age variation.
To the best of our knowledge, it is the first time the gradient
direction is combined with SVM for face verification prob-
lems. Our experiments show that by discarding magnitude
information, the gradient orientation achieves significantly
better recognition performance. We also propose using hi-
erarchical structure to further improve discriminability.

Our work also relates to work on skin appearance [8]. It
is known that melanin and hemoglobin are the two most im-
portant factors that determine human skin color. Tsumura
et al. [22] used independent component analysis (ICA) to
separate the effect of melanin and hemoglobin as two inde-
pendent components from skin color. They showed that the
logarithm of skin color can be decomposed as linear com-
binations of two components corresponding to melanin and
hemoglobin respectively. We show that this fact is closely
related to the insensitivity of gradient orientation across the
aging process.

3. Problem Formulation

3.1. Task Description

Passport photo verification is important in the process
of passport renewal and related face authentication appli-
cations. For example, when a person submits a new photo
for renewal, the ideal system can automatically tell whether
he is an imposter by comparing the new photo to previous
photos that were usually taken years before.

A common way to evaluate verification uses two criteria:
the rate of correct rejection on imposter images (correct re-
ject rate) and the rate of correct acceptance (correct accept
rate) on true images. These two rates conflict although we
want both rates to be as high as possible. In practice, for
the passport verification task, the correct reject rate is most
important because rejected images will be examined by a
human. For example, we can fix such a rate at a high level
(e.g. 99%) while making the correct acceptance rate as high
as possible, which measures the human labor that is saved.



3.2. Classification Framework

We model face verification as a two-class classification
problem [15, 17, 9]. Given an input image pairI1 andI2,
the task is to assign the pair as eitherintra-personal(i.e. I1

andI2 from the same people) orextra-personal(i.e. I1 and
I2 from the different individuals). In this section we briefly
describe the framework of using a support vector machine
for this task. Details about support vector machines can be
found in [24].

Given any image pair(I1, I2), it is first mapped it onto
the feature space. Formally, we havex = F(I1, I2) ∈ Rd ,
wherex is the feature vector extracted from the image pair
(I1, I2) through the feature extraction function (functional)
F(., .), andRd is thed-dimensional feature space.

Then the support vector machine is used to divide the
feature space into two classes, one for intra-personal pairs
and the other for extra-personal pairs. Using the same termi-
nology as in [17], we denote the separating boundary with
the following equation

∑
Ns
i=1αiyiK(si, x) + b = ∆ (1)

whereNs is the number of support vectors andsi is thei-
th support vector.∆ is used to trade off the correct reject
rate and correct accept rate as described in Sec.5. K(., .)
is the kernel function that provides SVM with non-linear
abilities. The RBF kernel is chosen for our task due to its
effectiveness and efficiency. The RBF kernel is defined as

K(x1, x2) = exp(−γ ∗ |x1 − x2|2) (2)

whereγ is a parameter determining the size of RBF kernels
(γ = 1

d is used in our experiments).

4. Gradient Orientation Pyramid

There is one question left open in the previous section:
what isF(., .)? A natural choice is to use the intensity dif-
ference betweenI1 andI2, which is calleddifference space
in [15] and also has been used in [19, 17]. With an appro-
priate normalization scheme, the intensity difference can be
made robust to affine lighting changes. However, the affine
lighting model is not always sufficient for face images, es-
pecially for images taken at times separated by years. In-
stead, to alleviate this problem, we propose using the cosine
of gradient orientations as features of image pairs, because
gradient orientation is known to be insensitive to lighting
change [5]. In addition, we organize the gradient orienta-
tion in a hierarchical fashion, which further improves its
discriminability.

4.1. Gradient Orientation Pyramid

Our proposed features are partly motivated by recent
work using gradient information for object representations

Figure 2.Computation of a GOP from an input image. Note: 1) In
the right figure, the gradient orientations at “flat” regions are ex-
cluded. 2) The right figure is made brighter for better illustration.

([13, 6]). In these works, the gradient directions were
weighted by gradient magnitudes. In contrast, inspired by
[5], we discard magnitude information and use only orien-
tations, which demonstrates significant improvement in our
experiments (Sec.5). Furthermore, the gradient directions
at different scales are combined to make a hierarchical rep-
resentation.

Given an imageI(p), wherep = (x, y) indicates pixel
locations, we first define the pyramid ofI as P(I) =
{I(p;σ)}s

σ=0 as

I(p; 0) = I(p)
I(p;σ) = [I(p;σ − 1) ∗ Φ(p)] ↓2 σ = 1, ..., s

(3)

whereΦ(p) is the Gaussian kernel (0.5 is used as the stan-
dard deviation in our experiments),↓2 denotes half size
downsampling, ands is the number of pyramid layers. Note
that in (3) the notationI is used both for the original image
and the images at different scales for convenience.

Then, the gradient orientation at each scaleσ is defined
by its normalized gradient vectors at each pixel.

g(I(p; σ)) = ∇(I(p, σ)) / |∇(I(p, σ))| (4)

Naturally, thegradient orientation pyramid(GOP) ofI, is
defined asG(I) = {g(I(p, σ))}s

σ=0. Fig. 2 illustrates the
computation of a GOP from an input image.

4.2. Differences Between GOPs

Given an image pair(I1, I2) and corresponding GOPs
(G(I1),G(I2)), the feature vectorx = F(I1, I2) is com-
puted as the concatenation of the cosines of the difference
between gradient orientations at each pixel and all scales.
The computation can be efficiently achieved through the in-
ner product of the corresponding entries of GOP, i.e., for
pixel p at scaleσ, it is computed as

f(I1(p;σ), I2(p;σ)) = g(I1(p; σ)) · g(I2(p;σ)) (5)

The cosine values are organized into a feature vectorx as

x = F(I1, I2) = (. . . , f(I1(p; σ), I2(p; σ)) , . . .)> (6)

wherep is organized in lexicographic order andσ in in-
creasing order.

We summarize the advantages of using GOPs for face
verification tasks as follow.



• GOP is insensitive to illumination changes [5]. As a
result, no normalization is needed on the input images.

• The pyramid technique provides a natural way to per-
form face comparison at different scales.

• The inner product between normalized gradients lies
in a finite range ([−1, 1]) that automatically limits the
effect of outliers.

In the following, we use SVM+GOP to indicate the pro-
posed approach.

5. Verification Experiments

5.1. Passport Datasets

We tested the proposed approach on two real passport
image datasets, which we will refer to as Passport I and
Passport II respectively. Passport I is the dataset used in
[19]. It contains 452 intra-personal image pairs (several du-
plicate pairs were removed) and 2251 randomly generated
extra-personal image pairs. Passport II contains 1824 intra-
personal image pairs and 9492 randomly generated extra-
personal image pairs. Images in both datasets are scanned
passport images. They are in general frontal images with
small pose variations. The lighting condition varies, and
can be non-uniform and saturated. The age differences be-
tween image pairs are summarized in Table1. It shows that
both datasets have significant age gaps for intra-personal
images. Fig.3 further shows the distribution of age differ-
ences in the datasets. Intuitively, Passport II is more chal-
lenging than Passport I for verification tasks because of the
relatively larger age differences. Furthermore, we observed
that the image resolution change in Passport II is also larger
than that in Passport I.

In our experiments (SVM-based approaches), the images
are preprocessed using the same scheme as in [19]. This in-
cludes manual eye location labelling, alignment by eyes and
cropping with an elliptic region. Image sizes are reduced to
96× 84 for Passport I and72× 63 for Passport II. Example
images at these resolution are shown in Fig.8, where we can
also see the “disappearance” of wrinkles. While relatively
larger resolutions could be used to make use of more infor-
mation that is still insensitive to wrinkles (e.g.160 × 140
as in Fig.8 (c)), we run out of memory with them in the
current Matlab-based implementation.

To alleviate the alignment problem, when comparing two
GOPs, we tried different alignments with small shiftings
(two pixels). In our experiments it helped to improve the
performance by around 0.5% (equal error rate). A similar
technique is used by [14].

Table 1.Passport datasets for identification tasks. “Std.” is short
for standard deviation.

Dataset # intra mean agestd. age mean std.
pairs age diff. age diff.

Passport I 452 39 10 4.27 2.9
Passport II 1824 48 14.7 7.45 3.2
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Figure 3.Distribution of age differences in the passport image
databases. Left: Passport I. Right: Passport II.

5.2. Methods

We compared the following approaches. 1) SVM+GOP:
the approach proposed in this paper. 2) SVM+GO: this is
similar to SVM+GOP, except that only the gradient orien-
tation (GO) at the finest scale is used without a hierarchical
representation. 3) SVM+G: this one is similar to SVM+GO,
except that the gradient (G) itself is used instead of gra-
dient orientation. It can also be viewed as weighting gra-
dient orientations with gradient magnitudes. 4) SVM+diff
[17]. As in [17], we use the differences of normalized im-
ages as input features combined with SVM. 5) GO: this
is the method using gradient orientation proposed in [5].
6) Bayesian+PFF [19]. This is the approach combining
Bayesian framework [16] and PointFive Face (PFF) [19]. In
addition, two commercial systems are tested on the datasets,
which we will name Vendor A and Vendor B1.

The first approaches use exactly the same configurations
and the same SVM framework, but different representa-
tions. The purpose is to study the superiority of the pro-
posed GOP representations. The other four approaches are
different from our method in both representations and clas-
sification frameworks.

5.3. Experimental Evaluation

For verification tasks, the correct reject rate (CRR) and
the correct acceptance rate (CAR) are two critical criteria,
which are defined as

CRR = # correct rejected extra-personal pairs
# total extra-personal pairs

CAR = # correct accepted intra-personal pairs
# total intra-personal pairs

(7)

The performance of algorithms is evaluated using the
CRR-CAR curves that are usually created by varying some
classifier parameters. As mentioned in Sec.3.1, although
both rates are desired to be as high as possible, the more
important is the performance when CRR is high.

1Anonymous due to agreements with the companies.



We used three-fold cross validation in our experiments.
For each experiment, the CRR-CAR curve is created by ad-
justing parameter∆ in (1). The total performance is evalu-
ated as the average of the output CRR-CAR curves of three
folds. For Vendor A and B, all original color images are
input to their systems. To compare with Bayesian+PFF, we
also test SVM+GOP in the experimental setup according to
[19], i.e., we use 200 positive and 200 negative pairs as a
training set.

Fig. 4 and Fig.5 show the CRR-CAR curves for the ex-
periments. In addition, Table2 lists the equal error rates (i.e.
when CRR=CAR). There are several observations from the
experimental results.

First, among the SVM-based approaches, GOP works
the best. The gradient direction obviously plays a main role
in GOP’s excellent performance, since both SVM+GOP and
SVM+GO largely outperform SVM+G, which includes the
gradient magnitude information. In comparison, the use of
a hierarchical structure in GOP further improves upon GO.
Later we will show that the improvement is more obvious
when larger image resolution is used.

Second, SVM+GO largely outperforms GO. Note that,
for face recognition, SVM+diff is previously used in [17]
and GO is previously used in [5]. This shows that our
method, as a combination of these two, greatly improves
both of them.

Third, SVM+GOP outperforms the Bayesian approach
[19] on both datasets. In addition, from Fig.5 it is obvious
that SVM+GOP is more suitable for passport verification
tasks because it performs much better at a high correct re-
ject rate, which is desired as mentioned in Sec.3.1. Further-
more, given an image pair, our approach does not require
the information of which one is older, which is used in the
Bayesian approach as a prior.

Fourth, on Passport I, SVM+GOP performs similarly to
Vendor A while much better than Vendor B. While on Pass-
port II, SVM+GOP outperforms Vendor A but performs
worse than Vendor B (interestingly, the ranks of Vendor
A and Vendor B alternate). This observation shows that,
though very simple, our approach performs close to com-
mercial systems, which combine many additional heuristic
techniques and are well tuned. Furthermore, only low reso-
lution gray images are used in our approach, while the orig-
inal color images are used in both commercial systems.

In addition to the verification experiments mentioned
above, another two experiments have been done to further
understand the proposed approach. One of them studies the
hierarchical information captured by GOP. The other tries to
find irrelevant features on the face that are related to wrin-
kles to some degree.
Study on Hierarchical Information. As mentioned above,
the improvement from adding hierarchical information is
not significant due to the limited image sizes. To further
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Figure 4.CRR-CAR curves for three-fold cross validation exper-
iments. Top: on Passport I. Bottom: on Passport II. This figure is
better viewed in color.
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Figure 5.CRR-CAR curves for experiments with 200 intra- and
200 extra-pairs for training.

study the effect of the pyramid, we conducted experiments
comparing SVM+GOP and SVM+GO on larger resolution
images. We used randomly chosen subsets of Passport I
and Passport II due to memory limitations. Specifically, for
Passport I, one third of the image pairs are used with the
size207×180. Note that the wrinkle effect at this resolution
may still exist (e.g. Fig.8 (b)), but we focus on the study of
hierarchical information instead. For Passport II, one fourth
of the image pairs are used with the size160 × 140 (wrin-
kles almost disappear at this resolution, e.g. Fig.8 (c)). The
improvement of GOP from GO for different resolutions are
summarized in Table3. The table shows that the improve-



Table 2.Equal error rates. Left table: experiments of three-fold cross validation. Right table: experiments using 200 intra- and 200
extra-pairs as training, as in [19].

GO [5] SVM+diff [ 17] SVM+G SVM+GO SVM+GOP Vendor A Vendor B
Pass. I 17.6% 16.5% 17.8% 9.5% 8.9% 9.5% 11.5%
Pass. II 20.7% 18.8% 17.4% 12.0% 11.2% 13.5% 8.0%

SVM+GOP Bayesian [19]
5.1% 8.5%
10.8% 12.5%

ment of using pyramid is larger when higher resolution im-
ages are used. This validates including hierarchical infor-
mation in the GOP representation.

Table 3.The improvement of GOP from GO. The content inside
each cell is the difference of equal error rates from GO to GOP.

Reso. 96× 84 207× 180
Pass. I 0.6% 1.9%

Reso. 160× 140 72× 63
Pass. II 0.8% 1.6%

Study of Irrelevant Wrinkle Related Features. This ex-
periment provides a preliminary study of how wrinkle re-
lated regions affect the recognition system. For this task,
we use two feature masks (Fig.6). One is the usual el-
lipse mask. The second one removed the forehead and
cheeks, which are known to carry much wrinkle informa-
tion [4] but little shape information. We tested SVM+GO
and SVM+diff with both masks. The performance curves
shown in Fig.6 show that there is no performance drop by
removing the wrinkle regions. This suggests that SVM is
already learning to ignore these regions. Or it might mean
that the noise added by wrinkles balances whatever positive
information is there.
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Figure 6.Experiment on irrelevant wrinkle region selection. Left:
two masks with resolution72×63 (enlarged for better illustration).
Right: performance curves, where “+FS” means with feature se-
lection masks (the bottom one on the left).

6. Effects of Age Gaps on Recognition Perfor-
mance

We are interested in how age differences affect the per-
formance of machine recognition algorithms. Taking ad-
vantage of the large number of image pairs in Passport II,
an empirical study of this problem is conducted.

First, intra-personal image pairs are grouped into four
classes according to their age gaps. Specifically, these are
groups with ages gaps from 0 to 2 years, 3 to 5 years, 6 to
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Figure 7.Effect of aging on recognition performance. The curves
are shifted a bit along thex axis for better illustration.

8 years, and 9 to 11 years. The goal is to test the recogni-
tion performance for different groups. Specifically, we use
the average equal error rates as a criterion. For each group,
80 intra pairs and 80 extra pairs are randomly selected as
training set. Testing set are created similarly but with 15
intra pairs and 15 extra pairs. There is no overlap between
training and testing sets. After that, four SVM-based ap-
proaches are tested on the data sets and equal error rates are
recorded. To reduce the variance caused by the lack of train-
ing samples, 20 different training/testing sets are generated
and the average equal error rates are recorded. The above
experiments have been run 50 times with randomly chosen
training/testing sets (i.e.,50 × 20 training/testing sets). Fi-
nally, the mean and standard deviation of equal error rates
are summarized to evaluate the performance.

Fig. 7 shows the performance of the experiments on all
four groups. From the plots, we found that faces separated
by more than a year are more difficult than those within
one year. What surprised us is that the difficulty becomes
saturated after the age gap is larger than four years. This
phenomenon is observed on all four different representa-
tions tested in the experiments. It shows that, when the age
gap is larger than four years (up to ten years), the difficulty
added by aging is not a dominant factor compared to other
nuisance factors such as illumination, expression, etc.

7. Gradient Orientation Under Aging Progress

As shown in Sec.5, gradient orientation yields a very ro-
bust representation for faces undergoing aging. Though we
have not developed rigorous theoretic support for this, we
give some intuitive explanations of why the gradient orien-



(a) (b) (c) (d) (e)
Figure 8.Perception of wrinkles at different resolution (in pixels)
of a face image at age 50. The resolutions in (b-e) will be used in
our experiments (see Sec.5). (a) Original image, height=347. (b)
Height=207. (c) Height=160. (d) Height=96. (e) Height=72.

tation is robust to aging for face recognition tasks.
The change of skin appearance over time is very compli-

cated [8]. Discriminative invariance to aging is very diffi-
cult to achieve (if it exists). Focusing on aging problem and
based on the observation from our datasets, we made fol-
lowing assumptions. 1) We assume that all faces are frontal
and there is no alignment problem. With this assumption,
we can ignore viewpoint issues in image formation. 2) Re-
flectance can be modelled as Lambertian, which has been
widely and successfully done for face recognition tasks. 3)
We are interested in faces with age ranging from 20 to 70.
All these assumptions are roughly satisfied by the passport
photos used in our experiments.

With the above assumptions, we model a human face as
a surfaceξ(x , t) = {n(x , t), ρ(x , t) : x ∈ Ω} described by
surface normalsn(x , t) and albedosρ(x , t) at age or time
t ≥ 0. For recognition tasks,Ω ⊂ R2 is the shared sup-
port for both the face surface and the corresponding image
plane. With the Lambertian model, the imageI(x , t) of a
faceξ(x , t) is generated by the following formula

I(x , t) = ρ(x , t)〈n(x , t), l(t)〉 ∀x ∈ Ω, t ≥ 0 (8)

wherel(t) .=
∑

i li(t) ∈ R3, andli(t) are different lighting
sources. Next, we will discuss hown andρ change over
time with respect to recognition tasks.

For the task of face recognition, we can roughly treat the
surface normaln(x , t) as consistent over age gap∆t (e.g.
∆t = 10 in our experiments). This is based on the follow-
ing arguments. First, previous study of craniofacial growth
[18] has shown that face profiles (e.g. boundary shapes, eye
locations) are relatively stable for people older than 18 year.
This motivates assumption 3. Second, it has been shown
that wrinkles are one of the most important factors for the
visual perception of age [1]. In fact, the width and depth of
wrinkles grow roughly linearly with age [1]. While wrin-
kles do affect the surface normals, the effects are largely
reduced due to following facts.

• Wrinkles are hardly perceptible for images with low
resolution [10], which are used for most recognition
tasks. For example, the wrinkles on the face in Fig.8
“disappear” when the resolutions decreases.

• The distribution of wrinkles on human faces is known
to be nonhomogeneous. For example, Boissieux et
al. [4] summarized eight generic wrinkle maps from
the qualitative data from L’Oreal. From the studies in
cosmetics, we know that wrinkles appear frequently
on forehead and cheeks, which are not important for
face recognition. This means that most regions with
heavy wrinkles can be ignored by face recognition al-
gorithms, either through manually adjusted masks or
by automatic feature selection (e.g. through SVM).
One support comes from the experiment in Sec.5. It
compares face recognition with forehead and cheeks to
recognition without them, and observes no significant
difference in recognition performance.

As a result, we can roughly writen(x , t) ≈ n(x) and sim-
plify (8) as2

I(x , t) ≈ ρ(x , t)〈n(x), l(t)〉 ∀x ∈ Ω, t ≥ 0 . (9)

The gradient orientation is known to be robust under the
Lambertian lighting model [5, 2], which is true if we as-
sumeρ is independent oft. Alternatively, if ρ(x , t) is a
homogeneous scaling function acrosst, then the gradient of
I(x , t) is invariant acrosst. Specifically, we wantρ to have
the following decomposition

ρ(x , t) ≈ a(t)ρ0(x) (10)

wherea(t) is the positive scaling function andρ0(x) is a
“reference” albedo (equivalently, (10) can also be written
asρ(x , t) ≈ a(t− t0)ρ(x , t0)).

Next we will show the support for (10) from studies of
skin optics. Studies in skin optics [8] show that skin color is
mainly determined by two kind of chromophores, melanin
and hemoglobin. Tsumura et al. [22] used ICA to separate
the effect of melanin and hemoglobin as two independent
components of the logarithm of skin color. By adjusting the
amount of the two components, their approach is success-
fully applied to skin color synthesis tasks [23]. With their
model, the skin colorc(x) ∈ R3 can be derived as3

c(x , t) = cp(x,t)
1 cq(x,t)

2 c3 (11)

wherec1, c2 ∈ R3 correspond to melanin and hemoglobin
respectively.p andq correspond to the amount of associ-
ated pigments at timet and are mutually independent.c3

denotes a constant shift. As a result, the change of skin

2Strictly speaking, we should useΩ0 ⊂ Ω in (9) for feature selection.
3In (11) and (12) the product between vectors are element wise.



color over time is roughly determined by the change ofp
andq.

In tasks where age gaps are limited (e.g.t ≤ 10 in
our passport verification task, Sec.5.1), the change ofq
is small. This is because hemoglobin reflects blood color
that is relative stable. As a result, we approximateq with,
q(x , t) ≈ q(x). Under the same assumption, and consid-
ering the fact that the change of melanin is mainly due to
exposure to sunlight (for healthy skin), we approximately
treat the change ofp as additive,p(x , t) ≈ p0(x) + p1(t).
Therefore, (11) can be approximated as

c(x , t) ≈ cp0(x)
1 cp1(t)

1 cq(x)
2 c3

.= a(t)c0(x) (12)

where a(t) .= cp1(t)
1 and c0(x) .= c1(x)p0(x)cq(x)

2 c3.
Equation (12) is close to (10). We expect future works to
reveal deeper connections between this decomposition and
the aging insensitivity of gradient orientations.

8. Conclusion and Discussion

In this paper we studied the problem of face recogni-
tion with age variation. First, we proposed a robust face
descriptor, the gradient orientation pyramid, for face ver-
ification tasks across ages. Compared to previously used
descriptors such as image intensity, the new descriptor is
more robust and performs well on face images with large
age differences. In addition, the pyramid technique enables
the descriptor to capture hierarchical facial information. In
our experiments with comparison to several techniques, the
new approach demonstrated very promising results on two
challenging passport databases. Second, the effect of the
aging process on recognition algorithms are studied empir-
ically. In the experiments we observed that the difficulty
of face recognition algorithms saturated after the age gap is
larger than four years (up to ten years).
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