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ABSTRACT 

Research has been done to explore the relationships between the 

Gene Ontology-based similarity and gene expression profiles in 

the mammalian brain. However, little attention has been paid to 

the location information of a gene's expressions.  Gene expression 

maps, which contain spatial information regarding the expression 

of genes in mice’s brain, are obtained by combining voxelation 

and microarrays. Based on the hypothesis that genes with similar 

gene expression maps may have similar gene functions, we 

propose an approach to identify pair-wise gene functional 

similarities by gene expression maps. By considering pairs of 

genes from an original dataset as samples whose features are 

extracted from expression maps and labels are the functional 

similarities of pairs of genes, we explore the relationship between 

similarities of gene maps and gene functions. We restrict the 

dataset to genes that are associated with previously detected 

functional expression profiles to strengthen the relationship. We 

use AdaBoost, coupled with our proposed weak classifier, to 

analyze the dataset and predict the functional similarities. The 

experimental results show that with the increasing similarities of 

gene expression maps, the functional similarities are increased 

too. The boosting analysis can predict the functional similarities 

between genes to a certain degree. The weights of the features in 

the model indicate which features are significant for this 

prediction. These findings can potentially assist the biologists by 

providing helpful clues in predicting gene functions. 

Categories and Subject Descriptors 

G.4 [Programming Languages]: H.2.8 Database Applications - 

Data mining, Image databases; I.5 PATTERN RECOGNITION 

I.5.2 Design Methodology - Classifier design and evaluation, 

Feature evaluation and selection; I.5.4 Applications; J.3 LIFE 

AND MEDICAL SCIENCES, Biology and genetics.  

General Terms 

Algorithms, Experimentation. 

Keywords 

Functional similarity of genes, gene expression maps, boosting, 

weak classifiers, voxelation. 

1. INTRODUCTION 
The Gene Ontology (GO) represents an important knowledge 

resource for describing the function of genes [1], and has been 

widely used for identifying similarities between gene functions 

based on the GO structure [2, 3]. Recently, research has been 

done to explore the relationships between the GO-based 

similarity and gene expression profiles [3-7] and the relationships 

between gene function annotation and gene sequence [8]. 
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However, little research has taken into account the location of a 

gene's expressions in the mammalian tissue. Voxelation is a new 

approach that involves dicing the brain into spatially registered 

voxels (cubes). It produces multiple volumetric maps of gene 

expression analogous to the images reconstructed in biomedical 

imaging systems [9-10]. Related research suggests that voxelation 

is a useful approach for understanding how the genome constructs 

the brain [11]. Gene expression patterns (maps) obtained by 

voxelation show good agreement with known expression patterns 

[12]. 

Our previous analysis of the gene expression maps [12] focused 

on studying the relationship between the gene functions and gene 

expression maps. We determined the similarity of gene 

expression maps using the wavelet transform and the similarity 

between gene functions using the GO structure and appropriate 

distance measures. Clustering analysis was done to detect a 

number of gene clusters that have both similar gene expression 

maps and similar gene functions. These clusters were denoted as 

significant clusters. The study confirmed that the hypothesis that 

genes with similar gene expression maps have similar gene 

functions holds for a certain set of genes.  We also successfully 

predicted gene functions with high accuracies by our proposed 

method - functional expression profiles, which are obtained from 

specific gene expression maps that are associated with given 

functions [13]. 

In this study, we identify pair-wise gene functional similarities 

from gene expression maps by employing learning-based 

techniques. In particular, we first form a new dataset by 

considering pairs of genes from the original dataset as samples. 

For each sample gene pair, the similarities or distances between 

the corresponding gene expression maps are used as features to 

describe it. The labels for gene pairs are the functional 

similarities between the pairs of genes. Consequently, we 

formulate the problem of identifying functional similarity 

between genes as a supervised learning problem.  

We use AdaBoost as the basic framework for our learning and 

predicting task. In order to fit the dataset which has huge number 

of samples and limited number of features, we propose a novel 

weak classifier that efficiently captures the distribution of 

individual features. We further restrict the dataset to the genes 

which are associated with previously detected functional 

expression profiles to strengthen the relationship between gene 

functions and gene maps. The experimental results show that the 

pair-wise gene functional similarities are increased with 

increasing similarities of gene expression maps. In addition, the 

boosting analysis classifies, with a high accuracy, the gene pair 

samples into two classes: the pairs of genes with similar functions 

and those without. The analysis of feature selection in the 

learning process indicates which features are significant for 

identifying the functional similarity from gene expression maps. 

Those features can be located and visualized in the original image 

of mice’s brain. These findings can be potentially used for 

predicting gene functions and providing helpful clues to 

biologists.  

The rest of this paper is organized as follows. In the data and 

methods section, after describing the pair-wise samples of 

multiple gene expression maps and briefly discussing how to 

extract features from the original gene expression maps and 

indentify gene functions distance, we present approaches for 

identifying functional similarities of pair-wise samples by 

Boosting and our own weak classifier. In the results section, we 

present the experimental results of identifying relationship 

between similarity of gene expression maps and their functions, 

and the boosting analysis. The discussion section provides an 

analysis of the obtained results and ideas for future applications 

of this methodology. 

2. DATA AND METHODS 

2.1 Multiplex gene expression maps 
Researchers at the David Geffen School of Medicine at UCLA 

used voxelation in combination with microarrays for acquisition 

of genome-wide atlases of expression patterns in the brain [11]. 

They acquired multiplex gene expression maps for 20,847 genes 

following the procedure below. A fresh brain is removed from a 

sacrificed mouse, and then a 1mm slice of the brain at the level of 

striatum is obtained. The coronal slice is cut by a matrix of 

blades that are spaced 1 mm apart, thus resulting in cubes 

(voxels) that are 1mm3. These voxels are located in the slice as 

Figure 1 shows. A1, A2, B1 … are in red color because these 

voxels are empty cubes that are assigned to maintain a 

rectangular. So, each gene is represented by the gene expression 

values of 68 voxels that compose a gene expression map of a 

mouse brain. By using different colors to show different values of 

gene expression, the expression map for a certain gene can be 

visualized as in Figure 2.  

 

 

 

 

 

The data set we consider in this study is a 20,847 by 68 matrix, 

in which each row represents the log2 ratio of 68 expression 

values of a particular gene, and each column represents the 

expression values for all the probes (genes) at a given voxel. To 

reduce the effects of noise in the original dataset, we discard 

genes whose gene expression values fall in the range [-1,1]. 

Figure 1  Voxels of the coronal slice 

. 

 

 

Figure 2  A visualized gene expression map 

 

 



Then, the remaining 13,576 genes’ IDs are imported into the 

SOURCE [14] database [15] to retrieve their Gene Ontology 

(GO) annotation information. Out of the 13,576 genes, 7,883 

genes are known genes and are annotated with at least one GO 

term. Our analysis is based on these genes. We denote the set of 

genes as G={g1, g2, …, gN}, where N=7,883. 

2.2 Pair-wise samples  
Gene expression maps can be viewed as samples that can be 

analyzed using data mining techniques. However, the targets or 

labels associated with each sample are not always available, such 

as it is the case in our study. Instead, we reconstruct a new 

dataset by taking each pair of genes as a sample, and calculating 

the functional similarity of the gene pair which then becomes the 

label for that sample. As a result, the problem of identifying the 

relationship between gene expression maps and gene functions is 

formulated as a regression problem.  

In the new dataset, each sample is a pair of gene expression maps. 

A sample is associated with the distance between the functions of 

its two genes such that the distance can be viewed as the label for 

the pair of gene maps. That is, a sample is defined as 

(g1, g2) with a “label” dF(g1,g2) , 

where (g1,g2) is a pair of genes, and dF(g1,g2) is the desired 

function distance measure (defined in Section 2.3) for this pair of 

genes which we intend to approximate.  

Suppose g1, g2, g3, … are gene maps and dF(g1, g2), dF(g2, g3), 

dF(g1, g3) are gene function distances between the pairs (g1, g2), 

(g2, g3), (g1, g3) respectively, we have samples for all the gene 

pairs:  

g1, g2    dF(g1, g2)  

g1, g3    dF(g1, g3) 

g2, g3    dF(g2, g3) 

…             … 

 

Given the dataset and labels, the problem boils down to finding 

the relation between the gene expression maps similarity and the 

functional similarity between two genes. In our previous analysis 

on gene expression maps [12], we define the similarity between 

two gene expression maps as the Euclidean distance between 

their wavelet representations, and calculate the similarity 

(distance) between two gene functions based on gene ontology 

structures using Lin’s method [16]. We have shown that the 

similarity between gene expression maps is positively correlated 

to the similarity between gene functions, which encourages the 

study of the relationship between gene maps and functional 

similarity of pairs of genes. 

2.3 The gene function distance 
We perform the analysis with respect to each one of the three 

gene ontologies, i.e., cellular component, molecular function and 

biological process. For example, in the category of biological 

process, if gene g1 has functions F(g1) ={f11, f12, …,, f1n} and gene 

g2 has functions F(g2) = {f21, f22, …, f2m}, we define the function 

similarity (or distance) value between these two genes as the 

averaged functional distance of pairs of functions between the 

two genes. This is calculated using the following formula: 
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counts the number of function pairs with non-zero distances and 

dfunc(.,.) is the gene function distance. 

 

2.4 The features of samples 
First, in order to reduce the noise in microarray experiments and 

improve the signal, we average the left and right hemispheres by 

taking advantage of the inherent bilateral symmetry of the mice 

brain. Mice do not have "handedness" or speech-centers in the 

brain, which are known to be localized to one hemisphere in 

humans. In the process of averaging, for each row of the map, we 

average the framed cells, as shown in Figure 3. Then, we replace 

B1 with B11, A2 with A10, and the averaged gene expression 

map is obtained as shown in Figure 4. 

 

 

 

 

 

 

Next, we use the wavelet transform to extract features from the 

original expression values of each gene expression map. In the 

data set that we study, each row represents the gene expression 

values corresponding to the 68 voxels in the selected slice of 

mice brain. Intuitively, if an expression value is similar to other 

values in its spatial neighborhood, it is more reliable. However 

Figure 4  Averaged gene expression map 

. 

 

 

Figure 3  Averaging left and right hemispheres 

. 

 

 



the original vectors of gene expression values ignore the spatial 

information. In order to measure the spatial consistency of 

expression values with others in their spatial neighborhood and to 

take into account the spatial factors of voxels in the brain map, 

we employ the wavelet transform to extract new features. We use 

the discrete wavelet transform (DWT) with single-level two-

dimensional wavelet decomposition to extract features based on 

the gene expression matrix (see Figure 1). The Daubechies 

wavelet function is used in this study. The output of the wavelet 

transformation consists of approximation coefficients, which are 

the average of gene expression values in neighborhood voxels, 

and detail coefficients, which indicate the difference of each 

voxel from the average. For the averaged map of 6 by 7 cells, by 

employing multilevel 2-D wavelet decomposition at level 3, we 

obtain 42 coefficients (combining approximation and detail 

coefficients to approach the best results).   

For each gene map, we concatenate its 42 wavelet coefficients 

and the 68 gene expression values, resulting in a descriptor of 

110 dimension. Given two genes g1 and g2, let V1 and V2 be their 

feature vectors respectively. We derive the feature vector of the 

gene pair (g1,g2) as 

          |V1 - V2|. 

Therefore, a gene pair sample can be represented as:  

          (|V1-V2|,  dF(g1,g2)) . 

 

2.5 Identifying functional similarities of pair-

wise samples by Boosting 

2.5.1 Why boosting 
Having the features and the samples ready, we need to choose a 

learning technique for our task. We face the challenge of dealing 

with a huge sample dataset. There are in total 

31,066,903(=7883×7882/2) samples of gene pairs. Each sample 

has 110 features. The dataset is too large to be directly handled 

by many popular machine learning methods, such as the Support 

Vector Machine. Boosting [17], however, solves this problem 

because by loading and computing samples and features (weak 

learners) sequentially. Another advantage of using boosting is 

that it provides a way to investigate the roles of features in the 

learned classifier or regressor. In our particular task, this helps 

understanding the importance of each individual feature in 

predicting the gene similarities.  

Since boosting is usually used to solve classification problems, 

we need to transform the regression problem to a classification 

problem by setting a threshold. The threshold is used to classify 

the continuous values of function distances into two classes: one 

that includes the samples (pairs of genes) with similar functions, 

and another that includes the samples with non-similar functions. 

So the classification problem with the continuous output in the 

range [-1,1] is transformed to a problem with two classes {-1, 1}, 

through a predefined threshold. 

There are several variants of boosting algorithms that are widely 

used in the fields of data mining and pattern recognition. We 

choose AdaBoost [18] due to its excellent performances observed 

in many applications and its flexibility in weak classifier design. 

Intuitively, AdaBoost uses a weighted additive model to fit the 

training data. The model, which is named a strong classifier, is a 

weighted summation of a set of weak classifiers. The weight and 

weak classifiers are iteratively estimated or selected until 

convergence. 

In our task, for an input feature vector V, a strong classifier 

denoted as H(V) is formulated as a combination of weak 

classifiers h1(V), h2(V), …, hK(V): 
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where ck is the weight for the k-th weak classifier hk. The task of 

the learning process is, in the k-th iteration, to either fit hk or to 

pick hk from a candidate set of weak classifiers. The fitting or 

selection is based on the classification performance on the 

training samples weighted by the current weights.

 
2.5.2 Designing the weak classifiers 
One popular way of designing weak classifiers is to associate 

with each weak classifier a threshold to create a binary classifier, 

i.e., a stump function. In particular, for the i-th feature V(i) in our 

feature vector V and a threshold τ, a weak classifier has the form 

 

,
1 ( )

( ) .
1 ( )

i
if V i

h V
if V i







 

 

 

The learning process is to find i, τ, and ck for each one of the 

weak classifiers. In this case, a weak classifier is associated with 

only one feature. As a result, the weight ck can be used to 

evaluate the importance of the feature in the strong classifier, i.e., 

the ultimate model used for prediction. 

The binary classifier is very simple and easy to implement. 

However, for a complex learning task such as the one we are 

dealing with, more efficient weak classifiers often help with 

improving the learning and predicting efficiency by reducing the 

number of weak classifiers needed. In addition, in our study we 

have a huge set of training samples, which enables us to use 

better but more complex weak classifiers. Motivated by this 

observation, we extend the simple stump classifier by modeling 

the weak classifier with uniformly spaced bins. Specifically, our 

weak classifier for the i-th feature contains an indicating vector 

L{-1,1}M, where M is a predefined number of bins. A classifier 

has the following form 
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where index(V(i)) is the index of the bin V(i) falls into.  

In the learning stage, the task at each iteration is to select the best 

feature i that estimates the indicating vector L. This is done by 

building a cumulated weight for each feature followed by a voting. 

The stump weak classifier can be viewed as a simplified case 

where M=2.  

Figure 5 shows an example of a weak classifier learned from one 

of the features of the training data. It shows that the range of 

features is divided into small regions. The intervals of weak 

classifiers depend on the range of each feature (i.e. the max and 

min of values of the feature). We divide the range uniformly with 

fixed sizes. The label for each region is the sum of weighted 



labels of samples within the region. When the weak classifier is 

used to predict, the sample is assigned the label of the region in 

which this specific feature falls.  

 

 

Figure 5: An example of proposed weak classifiers  

 

2.5.3 Applying the method to MFEP specific subset 
The relationship between the gene functions and gene expression 

maps does not hold for all genes but only for a set of certain 

genes. For this reason, we take advantage of the results obtained 

using multiple functional expression profiles (MFEPs) to perform 

the boosting analysis. For a given gene function or a set of gene 

functions, there might be a specific gene expression map (profile) 

associated with it. Genes that have similar gene expression maps 

to a specific profile may hold similar gene functions. We call this 

specific gene expression profile for a set of functions, Multiple 

Functional Expression Profile (MFEP). Genes associated to an 

MFEP have the same set of gene functions and also have very 

similar gene expression maps. The detected MFEPs can be used 

to predict gene functions with high accuracy [13]. In order to 

explore the strong relationship between gene functions and 

expression maps, we use a subset of genes instead of the whole 

dataset. This subset is created by calculating the expression 

features and labels of pairs of genes that are associated with the 

detected MFEPs, so we call it MFEP specific subset. Within this 

specific subset, there is supposed to be a regression relationship 

between the similarity of gene pairs (expression features) and 

gene function similarity (labels), which means that with the 

increasing similarities of pairs of gene expression maps, the gene 

functional similarities should be increased.  

 

3. RESULTS 

3.1 Identifying relationship between similarity 

of gene expression maps and their functions  
First, we analyze the MFEP specific subset which contains all the 

genes associated with the MFEPs. We use the correlation 

coefficients between the 42 wavelet features to identify the 

similarity between gene expression maps. By the Matlab 

command corrcoef, we get two results: [R P]. R are the 

correlation coefficients between genes, and P are the p-values for 

the hypothesis of no correlation. R is taken as the similarity 

between gene maps to analyze the subset of genes within MFEPs. 

For a given interval of R, for example [0.1, 0.2], we select the set 

of samples falling into the interval and average the functional 

similarities of the samples in this set.  

All 345 genes associated to the MFEPS are used in the 

experiment, resulting in 59,340 samples. The distribution of the 

correlation coefficients and the corresponding averaged functional 

similarities  of  samples  are  shown  in  Figure  6.  The figure 

shows that when the similarities of gene maps are increasing, the 

function  similarities  are  also  increasing.  The  trend  is  very 

obvious for the samples with high correlation coefficients (larger 

than 0.6). 

 

 

Figure 6: The distribution of correlation coefficients of gene 

maps similarity to functional similarity 

 

X (-1:0.1:1) are the correlation coefficients for pairs of gene 

expression maps. Y is the averaged functional similarities of the 

samples whose correlation coefficients (X) are within a certain 

interval, for example, between [0.4, 0.5].  

 

3.2 Boosting analysis on the MFEP specific 

subset 
We conducted the boosting analysis on the MFEP specific subset 

of the 59,340 samples using our proposed weak classifiers and 

AdaBoost. The dataset was randomly split into two disjoint 

dataset: a training set (29,670 samples) and a test set (29,670 

samples). The functional similarities between two genes are 

continuous values in the range of [0, 1], where “0” indicates no 

functional similarity between two genes and “1” indicates that 

the two genes have exactly same functions. In the experiment, we 

set a threshold 0.3 to cut the similarity values. If the value was 

larger than 0.3, we set the label to 1, otherwise we set the label to 

-1. With this threshold, there were 33.5% training samples that 

were assigned label 1, and 33.3% control (test) samples that were 

assigned label 1. The model was learned based on the training 

set, and was then used to predict the labels of samples in the test 

set. 

There are totally 113 features for each sample in the experiment. 

In addition to the 42 wavelet features and the 68 original 

expression values, three new features were included: the 

correlation coefficient, the p-value of the correlation coefficients, 

and the Euclidean distance between pair-wise gene maps for each 



 

 

Figure 7  Cumulated weights of selected features 

 

sample. Each p-value is the probability of getting a correlation as 

large as the observed value by random chance, when the true 

correlation is zero. If P(i,j) is small, e.g., less than 0.05, then the 

correlation R(i,j) is significant.  

For the weak classifier, we choose 100 as the number of bins. For 

the AdaBoost algorithm, the boosting repeated for 4000 iterations 

to reach a stable performance on the prediction. With these 

settings, we got the prediction error on the training and control 

samples. The minimum error on training data is 22.03%, and the 

minimum error on control data is 30.77%. With the number of 

iterations performed, the error converged to a certain value. By 

changing the parameters, such as the number of regions and 

iterations, the error rate can vary.  

Boosting selects the best feature (weak classifier) at each 

iteration and gives a weight to the feature. Figure 7 shows the 

cumulated weights of selected features over the 4000 iterations. 

The column of a certain features is the sum of the weights of the 

feature which are selected during the 4000 iterations. For 

example, if a feature is selected m times with weights w1, w2, …, 

wm, the sum of weights of the feature is ∑i=1
m

 wi. 

 

In the following we analyze the selected features separately.  

Top selected features: 

The top 10 selected features are: 113rd, 72nd, 43rd, 69th, 100th, 

95th, 105th, 66th, 20th, and 27th features. We notice that the most 

selected feature is the Euclidean distance between pair-wise gene 

maps. Since the Euclidean distance directly reflects the 

appearance similarity of two gene maps, this observation strongly 

supports our conjecture that gene map similarities correlate 

closely with the gene functional similarities.  

 

The original 68 expression values: 

Because the 68 original features are gene expression values in the 

68 voxels (Figure 1), we can visualize and locate these features in 

the mouse brain. These voxels are shown in Figure 8 as D1, A3, 

C9(C3), F8(F4), F3, G4, and C6. In the figure, the darker mark 

means that the voxel is selected more frequently (in terms of sum 

of weights) and that is more significant in predicting the 

functional similarity of genes from the gene expression maps. 

 

 

Figure 8  The most selected original voxels (better viewed in 

color) 

 

 

Figure 9  The most selected wavelet features (better viewed in 

color) 



The 42 wavelet features: 

The boosting experiment also selected wavelet features which are 

extracted from the averaged mouse brain. The top selected 

wavelet features are: the 20th, 27th, 28th, and 36th features. As 

figure 9 shows, the 20th feature is the horizontal detail coefficient 

extracted from area A, the 27th and 28th feature are the vertical 

detail coefficients extracted from area B and C, and the 36th 

feature is the diagonal detail coefficient extracted from area D.  

3.3 Boosting analysis on the restricted subset 
From the figure 7 we know that there are still noise weakening 

the relationship between functional similarities and correlation 

coefficients within the MFEP specific subset. So here we restrict 

the MFPE set to a more specific one in which the samples have 

the correlation coefficients bigger than 0.7, as the square in figure 

10 shows.  

Similarly, we apply the boosting analysis on the restricted subset 

of 612 samples using our proposed weak classifiers and 

AdaBoost. The dataset was randomly split into two disjoint 

dataset: a training set (441 samples) and a test set (171 samples). 

We set a threshold 0.67 to cut the similarity values, and there 

were 35.2% training samples that were assigned label 1, and 

30.3% control (test) samples that were assigned label 1.  

There are also totally 113 features for each sample in the 

experiment. For the weak classifier, we choose 20 as the number 

of bins. For the AdaBoost algorithm, we repeated 2000 iterations 

to reach the best performance of the prediction. With these 

settings, we got the minimum error on training data is 0%, and 

the minimum error on control data is 21.7%.  

 

 

 

 

Figure 10  The restricted subset with correlation coefficients 

bigger than 0.7 

 

Figure 11 shows the cumulated weight of selected features. The 

column of a certain feature is the sum of the weights of the 

feature which are selected during the 4000 iterations. For 

example, if a feature is selected m times with weights w1, w2, …, 

wm, the sum of weights of the feature is ∑i=1
m

 wi. 

 

  

 

 

Figure 11  Cumulated weights of selected features 

 

 

 



Top selected features: 

The top 10 selected features are: the 111st, 104th, 76th, 54th, 35th,  

13rd, 82nd, 78th, 86th, and 60th features. We notice that the most 

selected feature is the correlation coefficient between pair-wise 

gene maps.  

 

The original 68 expression values: 

The top 10 selected original features (voxels) are shown in Figure 

13 as G3, D5, B5, D11(D1), D7(D5), E4, B11(B1), F9(F3), 

C10(C2), and D2. In figure 12, the darker mark means that the 

voxel is selected more frequently.  

 

  

 

Figure 12  The most selected original voxels (better viewed in 

color) 

 

The 42 wavelet features: 

The top selected wavelet features are: the 35th, 13rd, 20th, 23rd, 

15th, 3rd, and 21st features. As figure 13 shows, the 35th feature is 

the diagonal detail coefficient extracted from area A, 13rd, 20th, 

15th features are horizontal detail coefficient extracted from area 

B, C, D, and 23rd feature is the vertical detail coefficient 

extracted from area A.  

 

 

 

Figure 13  The most selected wavelet features (better viewed 

in color) 

 

4. DISCUSSION 
In this study, we identify the pair-wise gene functional 

similarities by multiplex gene expression maps. This is based on 

the hypothesis that genes with similar gene expression maps 

share similar gene functions. This hypothesis was confirmed for a 

number of genes in our previous analysis [12]. Since the original 

dataset only contained the gene expression maps, it was hard to 

use supervised learning to analyze the data, so, instead, we built 

a new dataset in which each sample represented a pair of genes. 

The features for these samples were the similarity or distance 

values between two gene expression maps, and the labels were 

the functional similarities between genes. The wavelet 

transformation was used to extract features from the original 

expression values of the averaged hemispheres of the mouse 

brain. We used the absolute difference between each pair of 

features of the two genes. In addition, the correlation coefficients, 

the p-value of the correlation coefficients and the Euclidean 

distance were included in the calculation of the difference 

between gene expression maps. We define the functional 

similarities of two gens were the averaged function distances for 

each pair of functions included in the two genes. The similarity 

(distance) of two gene function was obtained by Lin’s method 

based on GO structures. We also built the MFEP specific subset 

by multiple functional profiles so that the genes in the subset had 

strong relationship between gene functions and gene expression 

maps. Based on the MFEP specific subsets, we applied AdaBoost 

and propose our own weak classifier to fit the characteristics of 

the dataset. We further restricted the dataset to a more specific 

one and tested our proposed methods on this restricted subset.  

From the experiment on identifying the relationship between 

similarity of gene expression maps and functional similarity, we 

observed that with increasing similarities of gene expression 

maps, the pair-wise genes’ functional similarities were also 

increased, especially for samples with correlation coefficients 

between pairs of gene maps larger than 0.8. From the boosting 

analysis, we were able to predict functional similarities of pairs 

of genes with about 80% accuracy (20% error rate) on the 

restricted MFEP specific subset. By the proposed methods, the 

similarity of pairs MFEP gene expression maps can be used to 

estimate the pairs of genes have similar gene functions or not. 

Therefore, this method could be used to predict an unknown gene 

have similar functions to a given known gene or not.  

The selected weak classifiers were able to identify the features 

that are more important for the prediction. By checking the most 

selected original features and wavelet features we were able to 

locate the significant voxels and area in the mouse brain. The 

most selected voxels generally corresponded to the salient 

neuroanatomical features of the analyzed brain slice. For 

example, in Figures 8 and 12, the most selected voxels 

correspond to cortex and striatum. The top selected wavelet 

features in Figures 9 and 13 also feature cortex and striatum. 

These observations are consistent with the major molecular and 

anatomical features of the brain slice. 

In the current study, the samples were divided into two classes in 

accordance to our binary classification formulation. In the future, 

we plan to use finer split of the samples (e.g., four or more 

classes) to improve the precision and finally model the problem 

as a regression problem. There are many linear and non-linear 

regression algorithms (especially the online versions) that can 

potentially handle large amounts of training data. In the future, 

we will try different regularizers besides of boosting, such that 

there is no need to make arbitrary thresholds of labels. 



Furthermore, since the Euclidean distance between wavelet 

representations may be insufficient to capture non-linearity in the 

complicated gene map-to-gene function relationship, we would 

like to investigate other information that is not captured by the 

wavelet representation. We also plan to incorporate other features 

besides the wavelet features into the analysis to further improve 

the results. 
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