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Abstract

Learning-based approaches to graph matching have
been developed and explored for more than a decade, and
have grown rapidly in scope and popularity recently. How-
ever, previous learning-based algorithms, with or without
deep learning strategy, mainly focus on the learning of node
and/or edge affinities generation, and pay less attention to
the learning of the combinatorial solver. In this paper we
propose a fully trainable framework for graph matching, in
which learning of affinities and solving for combinatorial
optimization are not explicitly separated as in many previ-
ous arts. We firstly convert the problem of building node
correspondences between two input graphs to the problem
of selecting reliable nodes from a constructed assignment
graph. Subsequently, the graph network block module is
adopted to perform computation on the graph to form struc-
tured representations for each node. It finally predicts a la-
bel for each node that is used for node classification, and
the training is performed under the regularization of both
permutation differences and the one-to-one matching con-
straints. The proposed method is evaluated on four public
benchmarks in comparison with state-of-the-art algorithms,
and the experimental results illustrate its excellent perfor-
mance.

1. Introduction
As a fundamental problem in computer science, graph

matching involves establishing correspondences between
vertex sets of given graphs while keeping the consistency
between their edge sets as well. It closely relates to
many computer vision problems including feature registra-
tion [24], shape matching [23], object recognition [31], vi-
sual tracking [29], object labeling [22], etc. Graph match-
ing is a well-known general NP-hard problem, and it is
hard to acquire a global optimum for graphs of reasonable
sizes. Consequently, approximate algorithms that seek ac-
ceptable suboptimal solutions by utilizing relaxation to har-

ness the solution searching are popular in this topic. De-
spite decades of research effort devoted to graph match-
ing [6,8,10,11,13,20,30,34,35,38], it remains a challenging
problem due to not only the non-convex objective but also
the combinatorial constraints.

Aiming to improve the matching accuracy in the assis-
tance of data analysis and machine learning technology,
learning-based algorithms have been investigated in the past
decade. Early methods [4, 16, 17] employ simple and shal-
low parametric models that control geometric affinities be-
tween pairs of vertices, and the promotion to the matching
performance derived from these models are usually limited.
With the growing interest in using deep features for both ge-
ometric and semantic visual matching tasks, learning graph
matching using deep network has attracted much research
attention. Researchers [28, 33] presented deep learning
frameworks for graph matching with general applicability
to model deep feature extraction, unary and pairwise affin-
ity generation and combinatorial optimization. However,
these studies mainly focus on the architecture for learning
the affinity functions while less investigation has been de-
voted to the design of the combinatorial solver. In partic-
ular, in these studies the quadratic assignment problem is
usually relaxed to easier ones and is solved by some non-
parametric and relatively simple combinatorial solvers that
may hurt the matching accuracy. It therefore demands re-
search attention on how to design fully trainable network to
boost graph matching.

Addressing the above mentioned issues, we propose a
novel deep learning framework for graph matching aim-
ing to improve the matching accuracy. Roughly speak-
ing, our framework is a fully trainable network designed
on top of graph neural network, in which learning of affini-
ties and solving for combinatorial optimization are not ex-
plicitly separated. We first construct an assignment graph
for two input graphs to be matched considering each can-
didate match a node, and convert the problem of building
node correspondences between input graphs to the problem
of selecting reliable nodes from the constructed assignment
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graph. Subsequently, the graph network block module is
extended in our framework to perform computation on the
constructed assignment graph, which forms structured rep-
resentations for each node by several convolutional filters.
Our network finally reads out node labels from the updated
graph state, which are used to classify the nodes into posi-
tive or negative ones. Moreover, the training of our network
is guided by taking both the permutation differences and the
one-to-one matching constraints as supervision.

For evaluation we test our algorithm on four public
benchmarks, in comparison with eight state-of-the-art base-
lines including both non-learning and learning-based algo-
rithms. Our algorithm exhibits robustness against noises
and outliers, and outperforms all baseline algorithms in gen-
eral. The source code along with the experiments is made
available at https://www.cs.stonybrook.edu/

˜hling/code/LearningGraphMatching.zip.
In summary, with the proposed learning framework for

graph matching, this paper makes contribution in three-fold:

• we transform learning of graph matching to learning
of node selection by constructing an assignment graph
given two input graphs to be matched;
• we combine learning of affinities and solving for com-

binatorial optimization into a unified learning frame-
work, and extend the graph network block module for
structural representation and relational reasoning; and
• we design a novel loss function in which the one-to-

one matching constraints are imposed to supervise the
training of the network.

2. Related Work

2.1. Traditional Graph Matching

Graph matching has been investigated for decades and
many algorithms have been proposed. In general, graph
matching has combinatorial nature that makes the global
optimum solution hardly available, and approximate soluti-
ons that seek acceptable suboptimal solutions are thus com-
monly applied to graph matching.

A notable work by Leordeanu and Hebert [13] approx-
imates graph matching based on spectral relaxation, which
constructs an assignment graph by representing the poten-
tial correspondences as nodes and between-correspondence
pairwise agreements as edges. The discovery of correct cor-
respondences is formulated as detecting the main strongly
connected cluster in the assignment graph, and is then
solved using an eigen-analysis approach. This work is later
extended by Cour et al. [8], who encode the mapping con-
straints into the spectral decomposition and apply a bis-
tochastic normalization on the compatibility matrix to con-
siderably reduce matching errors; and by Cho et al. [6], who
cast graph correspondence searching as a node ranking and

selection problem, and introduce an affinity-preserving ran-
dom walk algorithm to drive the node ranking based on its
quasi-stationary distribution. From a different and proba-
bilistic perspective, Zass and Shashua [35] propose a soft
matching criterion for the problem input and output, and
derive an algebraic relation between the hyper-edge weight
matrix and the desired node-to-node probabilistic matching.
Later, Egozi et al. [10] combine the spectral relaxation so-
lution and the probabilistic framework by interpreting the
former as a maximum likelihood estimate of the assignment
probabilities, and present a new probabilistic formulation of
quadratic matching by relaxing some of the assumptions.

Since constraint relaxation and post discretization are
commonly used in the approximate methods, many impor-
tant algorithms have been designed on top of the relaxation
and discretization strategy. For example, Gold and Ran-
garajan [11] employ the graduated assignment technique
to iteratively solve a series of linear approximations of the
cost function using Taylor expansion. Along the line there
comes the group of so called path following algorithms. In
particular, Zaslavskiy et al. [34] reformulate graph match-
ing as a convex-concave relaxation procedure (CCRP) prob-
lem and then solve it by interpolating between two relatively
simpler and relaxed problems, one with convex relaxation
and the other with concave relaxation. Following the work,
Zhou and De la Torre [38] factorize an affinity matrix into
a Kronecker product of smaller matrices and provide speci-
fied convex relaxation and concave relaxation based on the
factorized matrices; Liu and Qiao [20] propose the gradu-
ated nonconvexity and concavity procedure (GNCCP) and
prove that it equivalently realizes CCRP on partial permu-
tation matrix; Wang et al. [30] present the path following
algorithm that uses adaptive and branching path following
(ABPF) strategy to discover singular points on the original
path and then branches new paths for potential better results.

Different from the above algorithms that drop the dis-
crete constraints for optimization, some purely discrete
methods [1, 32] are recently proposed to search the solu-
tion directly in the discrete space. These methods do not re-
quire any post-optimization step because the generated so-
lutions always obey the discrete affine mapping constraints,
but they usually suffer from limited optimality, which is de-
pendent largely on the initialization [1].

2.2. Learning Graph Matching

The above studies mostly rely on handcrafted affinities,
which are taken as input of the combinatorial solver. Such
a predefined parametric affinity model will limit the flexi-
bility to capture the structure of a real-world matching task,
and inappropriate affinity model may make the matching
solver deviating from the ground truth matching solution.

Addressing this issue, the learning for graph match-
ing has demonstrated its superior performance in terms of
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improving matching accuracy [36, 37], which is mainly
boosted by learning the parameters of the graph affinity
metric to replace the handcrafted affinity metric. Most con-
ventional algorithms for learning graph matching are su-
pervised ones [4, 14, 25] that require detailed labeling of
each node correspondence in each positive graph for train-
ing. These algorithms use large margin methods [26], non-
linear inverse optimization [19], and smoothing-based tech-
niques to train matching parameters in a supervised fashion,
respectively. Compared to supervised methods, the unsu-
pervised method [16] does not require a large amount of
node-level labeling. Later, Leordeanu et al. [17] offer a
semi-supervised learning formulation for models with con-
straints beyond second order. Different from these methods,
Cho [5] proposes to parameterize a graph model for all in-
stances of a class and learn its structural attributes for visual
object matching.

The literature on deep learning of graph matching re-
mains limited, despite the demonstrated power of deep
learning techniques in many areas. The few pioneering
studies mainly aimed to encode parametric affinity fun-
ctions in deep networks, so as to obtain correct match-
ing assignments under computed node and edge affinities.
Zanfir and Sminchisescu [33] formulates graph matching as
a quadratic assignment problem under unary and pair-wise
node affinities represented using deep parametric feature hi-
erarchies. It adopts spectral matching [13] as the combina-
torial solver which is differentiable for back propagation.
Wang et al. [28] employ the graph convolutional network
(GCN) framework [12] as a node embedding module that
aggregates graph structure information to generate node-to-
node affinity. By this way, graph matching is relaxed to
linear assignment and a Sinkhorn net is adopted as the com-
binatorial solver.

Our work falls into the group of deep learning algori-
thms. Compared with previous arts, our method focuses
on learning of not only the affinity functions but also the
combinatorial solver, which are effectively combined into a
fully trainable graph network. Strong structured representa-
tions and their relational inductive biases are imposed into
our learning framework to promote the matching accuracy,
and the experiments illustrate its excellent performance.

3. Problem Formulation

3.1. The Graph Matching Problem

An attributed relational graph of n nodes can be repre-
sented by G = (V,E,V, E), where

• V = {v1, . . . , vn} denotes the node set,
• E ⊆ V× V denotes the edge set,
• V = {vi|vi ∈ RdV , i = 1, 2, ...n} denotes the node

attribute set, and

• E = {ei|ei ∈ RdE , i = 1, 2, ..., |E|} denotes the edge
attribute set.

The node relations of an undirect graph are often conve-
niently represented by a symmetric adjacency matrix A ∈
Rn×n, such that Aij = 1 if and only if there is an edge
(vi, vj) ∈ E.

For graph matching, given two graphs G(i) =
(V(i),E(i),V(i), E(i)) of n node1, i = 1, 2, the problem is to
find a node correspondence X ∈ {0, 1}n×n between G(1)

and G(2), in which each element Xij = 1 if and only if
v
(1)
i ∈ V(1) corresponds to v(2)j ∈ V(2). In practice, the

matching is often restricted to be a one-to-one function that
requires X1n = 1n and X>1n = 1n, where 1n denotes
a vector of n ones. The graph matching problem can be
formulated as a quadratic assignment problem (QAP)

x∗ = argmax
x

x>Kx, (1)

where x .
= vec(X) ∈ {0, 1}n2

is the vectorized version
of matrix X and K ∈ Rn2×n2

is the corresponding affin-
ity matrix. Specifically, K is defined to measure pairwise
affinities

Kind(i1,i2)ind(j1,j2) =


ci1i2 if i1 = j1 and i2 = j2,
di1j1i2j2 else if A(1)

i1j1
A

(2)
i2j2

> 0,
0 otherwise,

(2)
where ind(·, ·) is a bijection mapping a node correspon-
dence to an integer index, ci1i2 measures the consistency
between the node attributes v(1)i1

and v(2)i2
, and di1j1i2j2 the

the consistency between edge attributes e(1)(i1,j1)
and e(2)(i2,j2)

.

3.2. Matching as Node Labeling

Different from the traditional graph matching algori-
thms [6, 8, 10, 11, 13, 20, 30, 34, 35, 38] that usually adopt
handcrafted affinity functions c and d, previous learning-
based algorithms [4, 16, 28, 33] are devoted to learning ap-
propriate affinity functions from data. However, the com-
binatorial solvers for the QAP (Eq. 1) employed in these
learning algorithms are still un-trainable and relatively sim-
ple, which may hurt the final matching accuracy. In this pa-
per we propose a novel learning framework that integrates
the learning of both affinity functions and the combinatorial
solver into a unified node labeling pipeline.

Basically, the problem of graph matching between the
two graphs G(1) and G(2) can be interpreted in a node la-
beling view by constructing an assignment graph GA =
(VA,EA,VA, EA) following [6, 13]. Given two graphs
G(1) and G(2), we consider each candidate correspondence

1For simplicity, we assume the two graphs to be matched have the same
size n, and formulations can be easily extended to handle varied sizes, e.g.,
by adding dummy nodes.
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Figure 1. Illustration of assignment graph.

(v
(1)
i , v

(2)
a ) ∈ V(1) × V(2) a node vAia ∈ VA. For edge

generation of GA, we build an edge between a pair of
nodes vAia, v

A
jb ∈ VA if and only if there are two edges

(v
(1)
i , v

(1)
j ) ∈ E(1) and (v

(2)
a , v

(2)
b ) ∈ E(2).

Fig. 1 illustrates a sampled assignment graph where each
candidate match between G(1) and G(2) corresponds to
a node in the assignment graph GA. Thus, the original
graph matching problem between G(1) and G(2) is con-
verted to classifying the nodes in GA into positive nodes
and negative ones. For example, building node correspon-
dences {(v(1)i , v

(2)
a ), (v

(1)
j , v

(2)
c ), (v

(1)
k , v

(2)
b )} between V(1)

and V(2) is equivalent to selecting nodes {vAia, vAjc, vAkb} out
of VA.

In previous approaches to this node selection prob-
lem, node attributes VA and edge attributes EA are usu-
ally assigned according to the predefined affinity functi-
ons, and some optimization techniques, for instance eigen-
analysis [13] and Markov random walks [6], are subse-
quently employed to acquire reliable nodes from the assi-
gnment graph GA.

Different from these hand-engineered algorithms, our al-
gorithm does not require predefined affinity functions. It in-
stead combines the raw attributes of G(1) and G(2) to form
the initial attributes of GA as

vA
ia = [v(1)i ; v(2)a ],

eA(ia,jb) = [e(1)(i,j); e(2)(a,b)].
(3)

In order to learn how to select reliable nodes from the gen-
erated assignment graph GA, we propose a fully trainable
graph network that takes GA as input, performs computa-
tion over the structure, and predicts a label for each node as
output. The predicted label of each node, for instance vAia, is
used to distinguish whether the candidate match (v

(1)
i , v

(2)
a )

is a desired one for the original graph matching problem.
The pipeline of the proposed learning framework is de-
scribed in details in Sec. 4.

4. The Proposed Method
As described in Sec. 3.2, the graph matching problem

is transformed to node labeling on the constructed assign-
ment graph. Although the input graphs are usually extracted

from images (for example in our experiments), the tradi-
tional convolutional neural network (CNN) is inadequate to
perform computation and reasoning on graphs due to lacks
of relational inductive biases.

Graph neural networks (GNNs), which operate on gra-
phs and structure their computations accordingly, have
grown rapidly in scope and popularity in recent years [2,
9, 12, 18, 27]. Inspired by these studies, we explore a flex-
ible learning-based approach to graph matching based on
GNN, which embeds strong relational inductive biases to
capitalize on explicitly structured representations and com-
putations.

4.1. Pipeline Overview

Our learning framework for graph matching is designed
on the top of graph network block (GNB) presented in [2],
which defines a class of functions for relational reasoning
over graph-structured representations. It is extended in our
framework to fit the graph matching problem by eliminating
redundant components and redefining certain functions. We
employ the extended module to perform computation over
the constructed assignment graph and return the predicted
node labels as output for node classification.

As illustrated in Fig. 2, the proposed learning pipeline
for graph matching consists of four main modules:

• Assignment Graph Generation: This module takes
the graphs to be matched as input, and constructs an
assignment graph by considering each candidate match
as a node in the graph, as that is described in Sec. 3.2.
• Encoder/Decoder: The encoder module takes the

constructed assignment graph as input, and transforms
its attributes into latent representations. Decoder is
coupled to the encoder module, which reads out the
final output from the updated graph state and reports
the predicted node labels for loss computation.
• Convolution Module: This module is the core compo-

nent of our learning framework, which convolves the
information of neighborhoods of each node to form
a structured representation through several convolu-
tional operators. Each instance of the convolution
module consists of an edge convolution layer and a
node convolution layer, and k instances are stacked to
aggregate the information of kth-order neighborhoods,
i.e., the nodes that are at maximum k steps away from
the central node.
• Loss Computation: In addition to the permutation

loss that evaluates the difference between the predicted
node labels and the ground-truth node labels, we im-
pose the one-to-one matching constraints into the loss
function to guide the training of the network.

The proposed framework takes raw attributes of the no-
des and edges as input and predicts node labels based on
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Figure 2. The pipeline overview of the proposed learning graph matching framework. We first construct an assignment graph given a pair of
input graphs to be matched. The encoder module transforms the attributes of the constructed assignment graph into latent representations
by two parametric update functions φv

enc and φe
enc. Subsequently, the stacked k instances of the convolution module convolves the kth-order

neighborhoods of each node to form its structured representations via four convolutional filters ρe, φe,ρv and φv . The convolved node
attributes are finally decoded to node labels by an update function φv

dec.

convolved node features. In this pipeline the learning of
affinities and solving for combinatorial optimization are in-
tertwined and iterated through stacked multiple instances
of the convolutional module. Our network finally produce a
soft matching, and we adopt a simple greedy/max-activation
approach as a post-processing for testing to guarantee a
combinatorial one-to-one matching.

It is notable that the generation of input graphs, includ-
ing node and edge feature extraction and edge generation,
is dependent on the task and is not embedded as a com-
ponent into our network. Different from [28, 33] that em-
ploy CNN to extract visual features from images, we ig-
nore all appearance information and utilize only geometric
cues. Specifically, we take the coordinates of each point as
the node feature, and concatenate the features of two no-
des associated with the same edge to form the edge fea-
ture. The reason of ignoring appearance cues lies that our
framework is not limited in the scenario of matching im-
ages despite it is validated on two real image datasets in
experiments. Furthermore, eliminating such a CNN mod-
ule makes our framework more lightweight and easier to
train. In experiments our algorithm exhibits excellent per-
formance and outperforms state-of-the-art baselines despite
of absence of appearance cues.

4.2. Encoder and Decoder

The encoder module transforms the attributes of the in-
put graph into latent representations by two parametric up-
date functions φvenc and φeenc. In this work φvenc and φeenc
are designed as two multi-layer perceptrons (MLPs), each
of which takes respectively a node attribute vector and an
edge attribute vector as input and transforms them into la-
tent spaces. Note that φvenc is mapped across all nodes to
compute per-node updates, and φeenc is mapped across all
edges to compute per-edge updates.

For simplicity we denote φvenc(VA) and φeenc(EA) the up-

dated node attributes and edge attributes by applying φvenc
and φeenc to each node and each edge respectively. Then the
encoder module can be briefly described as

GA ← encode(GA) = (VA,EA, φvenc(VA), φeenc(EA)).
(4)

The updated graph GA is then passed to the subsequent con-
volution modules as input.

The decoder module reads out the final output from the
updated graph state. Since only the node labels are required
for final evaluation, the decoder module contains only one
update function φvdec that transforms the node attributes into
a desired space

Y = decode(GA) = φvdec(VA) (5)

where Y ∈ Rn2×2 denotes the predicted node labels. Simi-
larly, φvdec is parameterized by an MLP and is mapped across
all nodes to form per-node label.

4.3. The Convolution Module

The convolution module consists of an edge convolution
layer and a node convolution layer, which aggregates the
information of the neighborhoods of each node to update
its attributes. The edge convolution layer assembles the at-
tributes of the two nodes associated with each edge to gen-
erate a new attribute of this edge. It is followed by the node
convolution layer that collects the attributes of all the edges
adjacent to each node to compute per-node updates. Note
that each instance of the convolution module aggregates the
information of the 1st-order neighborhoods, and thus the
stack of k instances can convolve the kth-order neighbor-
hoods for each node. These neighborhoods serve as the re-
ceptive fields of a convolutional architecture, allowing our
framework to learn effective graph representations.

The edge convolution layer: This layer is to update the
edge attributes in GA by aggregating the information of as-
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sociated nodes for each edge. It consists of an aggregation
function ρe and an update function φe

ei = ρe(vsi , vri),
e′i = φe(ei, ei),

(6)

where ei denotes the attributes of the i-th edge in GA, vsi

and vri the attributes of its source node and receive node re-
spectively. The edge convolution layer uses computed e′i to
update the edge attribute and takes the updated assignment
graph as output. Specifically, the aggregate function ρe is
parameterized as

ρe(vsi , vri) =M(vsi � vri), (7)

where M ∈ Rde×dv is the parameter matrices and � de-
notes element-wise multiplication of two vectors. The up-
date function φe is specified as an MLP that takes the con-
catenated vector [ei; ei] as input and outputs an updated
edge attribute vector. Similar to cases in the encoder, ρe and
φe are shared across all edges to compute per-edge affinity.

The node convolution layer: For each node, this layer
aims to collect attributes of adjacent edges for node convo-
lution. The computation of node convolution is performed
by an aggregation function ρv and an update function φv

vi = ρv(EA
i ),

v′i = φv(vi, vi),
(8)

where EA
i denote the set of all edge associated with the i-th

node in GA. Different from the aggregating function ρe in
the edge convolution layer, ρv in this layer is nonparametric
and formulated as

ρv(EA
i ) =

∑
k∈EA

i

ek. (9)

Similar to φe in the edge convolution layer, the update func-
tion φv is parameterized by an MLP that takes the concate-
nated vector [vi; vi] as input.

In summary, each instance of the convolution module
contains one nonparametric function, ρv , and three train-
able functions, ρe, φe and φv . In particular, these functi-
ons in different instances stacked in our framework are in-
dependent to each other, which allows our framework to
aggregate information of neighborhoods at different orders
with different degrees. It is notable that these functions are
convolutional filters, i.e., they are translation invariant to
spatial locations of nodes and edges. That is, they perform
per-node and per-edge computations that are independent
of the input data structure, allowing our framework to per-
form end-to-end training for graphs with variable size and
structure.

The number of Convolutional layers depends largely on
the size of the constructed assignment graph, and we empir-
ically fix it to 10 throughout our experiments.

4.4. Loss function

Similar to [28], we directly utilize the ground-truth node-
to-node correspondence to guide the training of our net-
work. Taking the ground-truth permutation matrix Xgt

between G(1) and G(2), we first convert it to node labels
Y gt ∈ {0, 1}n2×2 of the assignment graph GA as{

Y gt
i,1 = 1− xgti
Y gt
i,2 = xgti

, for 1 ≤ i ≤ n2, (10)

where xgt .
= vec(Xgt) is the vectorized version of the

ground-truth permutation matrix. To evaluate the difference
between the predicted node labels Y and the ground-truth
node labels Y gt, we adopt cross entropy loss to compute a
permutation loss

Lperm = −
n2∑
i=1

(Y gt
i,1 log Yi,1 + Y gt

i,2 log Yi,2). (11)

The one-to-one matching constraints of graph match-
ing usually play crucial roles in guiding graph matching in
traditional non-learning algorithms [20, 30, 38], but it has
not been fully explored in previous deep learning algori-
thms [28, 33]. In particular, these constraints can be formu-
lated as

Bxgt = 12n, (12)

where B ∈ {0, 1}2n×n2

is an auxiliary matrix (please refer
to [30] for the details of the construction of B). To impose
the one-to-one matching constraints in our graph network,
we first compute an index vector y ∈ {0, 1}n2

such that

yi = arg max
k∈{0,1}

Yi,k+1, for 1 ≤ i ≤ n2, (13)

and then evaluate the degree of satisfaction of the one-to-
one matching constraints by a constraint loss

Lcon = ‖B(y− xgt)‖2. (14)

We finally combine the permutation loss and the con-
straint loss

L = Lperm + αLcon, (15)

as the supervised information for end-to-end training of our
graph network, where α ≥ 0 controls the degree of the one-
to-one constraints imposed. In practice we set α = 0 at the
beginning of training and increase it gradually as training
goes on.

5. Experiments
We evaluate the proposed algorithm on four bench-

marks in comparison with eight state-of-the-art algori-
thms, IPFP [15], RRWM [6], PSM [10], GNCCP [20],
ABPF [30], HARG [5], GMN [33] and PCA [28], of which
the last two are deep learning methods.
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(a) varying noise (b) varying outliers

Figure 3. Comparison on 2D point sets.

(a) varying sampling gap varying outlier

Figure 4. Comparison on the CMU house dataset.

5.1. Synthetic 2D Points

We firstly compare these algorithms on the task of find-
ing correspondences between sets of 2D points generated
following the experimental protocol in [13]. For each trial,
we construct two sets, P(1) and P(2), with nin = 10 inlier
points, and later add nout outlier points to both sets. The
inlier points in P(1) are randomly selected in a given region
of the plane. We then obtain the corresponding inliers in
P(2) by disturbing independently the points from P(1) with
white gaussian noise N (0, σ), and then rotating and trans-
lating the whole data set P(2) with a random rotation and
translation. The outlier points of each set are randomly se-
lected from the same region as liners. The range of the point
coordinates in P(1) is 256

√
(nin + nout)/10. We generate

200,000 random pairs of point sets for training, in which
nout varies from 0 to 10 and σ from 0 to 20. Given two
pairs of points (i, j) ∈ P(1) and (a, b) ∈ P(2), The edge
affinity used in the non-learning methods is computed fol-
lowing [13].

We compare the performance of the algorithms under
two different settings: (1) we increase noise parameter σ
from 0 to 20 while fixing nout = 5, and (2) we change the
number of outliers nout from 0 to 10 and set σ = 20. Un-
der each scenario we generate 500 random pairs of graphs
for testing. As illustrated in Fig. 3, our algorithm exhibits
stronger robustness against both noise and outlier than com-
pared baseline algorithms.

Table 1. Comparison of matching accuracy (%) on the Willow
dataset.

Algorithm Car Duck Face Motor. Wine. AVG
IPFP [15] 74.8 60.6 98.9 84.0 79.0 79.5
RRWM [6] 86.3 75.5 100 94.9 94.3 90.2
PSM [10] 88.0 76.8 100 96.4 97.0 91.6
GNCCP [20] 86.4 77.4 100 95.6 95.7 91.0
ABPF [30] 88.4 80.1 100 96.2 96.7 92.3
HARG [5] 71.9 72.2 93.9 71.4 86.1 79.1
GMN [33] 74.3 82.8 99.3 71.4 76.7 80.9
PCA [28] 84.0 93.5 100 76.7 96.9 90.2
ours 91.2 86.2 100 99.4 97.9 94.9

5.2. CMU House Dataset

The CMU house dataset is widely-used for graph match-
ing, which includes 111 frames of image sequences, where
all sequences contain the same house object with transfor-
mation cross sequence gaps. In order to assess the matching
accuracy, 30 landmarks were manually tracked and labeled
across all frames.

We generate 300,000 random graph pairs for training.
For each trial at training, we form graph pairs by randomly
choosing two examples out of the 111 frames. To evaluate
graph matching algorithms against noise, n1(10 ≤ n1 ≤
30) points are randomly chosen out of the 30 landmark
points for the first example of the pair, which implies the
second example contains 30− n1 outlier points.

We follow [30, 38] to generate the affinity matrix that
is used in the non-learning algorithms. Graph edges are
built by Delaunay triangulation [7], and each edge (i, j) is
associated with a weight wij that is computed as the Eu-
clidean distance between the connected nodes vi and vj .
The node affinity is set to zero, and the edge affinity be-
tween edges (i, j) in G(1) and (a, b) in G(2) is computed as
Kind(i,a)ind(j,b) = exp(−(w(1)

ij − w
(2)
ab )

2/2500).

The matching accuracy of the compared methods are
tested under two scenarios. In the first case (Fig. 4(a)) we
set n1 = 20 and match all possible image pairs, in total
560 pairs gapped by 10, 20, ..., 100 frames, where increas-
ing sampling gaps implies the increase of deformation de-
gree. In the second (Fig. 4(b)) we fix the sequence gap to
50 and vary n1 from 30 to 20, i.e., increasing the number
of outliers from 0 to 10. It is observed that the non-learning
methods gain perfect matching results when no outlier point
exists, but increasing outliers degrades greatly their perfor-
mance. In contrast, the deep learning methods (GMN [33],
PCA [28] and ours) are relatively robust against deforma-
tion and outlier by learning a more robust affinity function.
In particular, our method outperforms all baseline methods
in general, and achieves about 95% matching accuracy un-
der all tested scenarios.
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Table 2. Comparison of matching accuracy (%) on the Pascal VOC dataset.
Algorithm aero bike bird boat bottle bus car cat chair cow table dog horsembike person plant sheep sofa train tv AVG
IPFP [15] 25.1 26.4 41.4 50.3 43.0 32.9 37.3 32.5 33.6 28.2 26.9 26.1 29.9 32.0 28.8 62.9 28.2 45.0 69.3 33.8 36.6
RRWM [6] 30.9 40.0 46.4 54.1 52.3 35.6 47.4 37.3 36.3 34.1 28.8 35.0 39.1 36.2 39.5 67.8 38.6 49.4 70.5 41.3 43.0
PSM [10] 32.6 37.5 49.9 53.2 47.8 34.6 50.1 35.5 37.2 36.3 23.1 32.7 42.4 37.1 38.5 62.3 41.7 54.3 72.6 40.8 43.1
GNCCP [20] 28.9 37.1 46.2 53.1 48.0 36.3 45.5 34.7 36.3 34.2 25.2 35.3 39.8 39.6 40.7 61.9 37.4 50.5 67.0 34.8 41.6
ABPF [30] 30.9 40.4 47.3 54.5 50.8 35.1 46.7 36.3 40.9 38.9 16.3 34.8 39.8 39.6 39.3 63.2 37.9 50.2 70.5 41.3 42.7
GMN [33] 31.9 47.2 51.9 40.8 68.7 72.2 53.6 52.8 34.6 48.6 72.3 47.7 54.8 51.0 38.6 75.1 49.5 45.0 83.0 86.3 55.3
PCA [28] 40.9 55.0 65.8 47.9 76.9 77.9 63.5 67.4 33.7 65.5 63.6 61.3 68.9 62.8 44.9 77.5 67.4 57.5 86.7 90.9 63.8
ours 46.9 58.0 63.6 69.9 87.8 79.8 71.8 60.3 44.8 64.3 79.4 57.5 64.4 57.6 52.4 96.1 62.9 65.8 94.4 92.0 68.5

5.3. Willow Object Dataset

The Willow Object dataset is provided by [5] containing
images of five classes, namely car, duck, face, motorbike
and winebottle from Caltech-256 and Pascal VOC 2007.
Each class contains at least 40 images with different in-
stances and 10 distinctive landmarks were manually labeled
on the target object across all images in each class.

Following [5] we randomly choose 20 images from each
object class for training and keep the rest for testing. For
testing we randomly select 1000 pairs of images from the
testing set of each class respectively.

To generate the affinity matrix used in the non-learning
algorithms, we follow [30] using SIFT descriptor [21] to
represent the node attributes and compute the node affinity
via their appearance similarity. Delaunay triangulation is
adopted to build graph edges, and each edge (i, j) is associ-
ated with two features dij and θij , where dij is the pairwise
distance between the connected nodes vi and vj , and θij is
the absolute angle between the edge and the horizontal line,
i.e., 0 ≤ θij ≤ π/2. Consequently, the edge affinity be-
tween edges (i, j) in G(1) and (a, b) in G(2) is computed as
Kind(i,a)ind(j,b) = exp(−(|dij − dab|+ |θij − θab|)/2).

Table 1 shows the matching accuracy of our algorithm
in comparison with baseline algorithms2. This dataset is
considered relatively easy because the lack of pose, scale
and illumination changes. The predefined affinity func-
tion is sufficient to capture the structure consistency, and
thus the previous deep learning methods [28, 33] that train
only the affinity function illustrate less superiority to the
non-learning methods. In contrast, our method is able to
learn not only the affinity function but also the combina-
torial solver for graph matching. As a result, our method
achieves the best matching results in all object classes ex-
cept the Duck class, and rises the average matching accu-
racy up to 94.9%.

5.4. Pascal VOC Keypoints

This dataset is an extension of the PASCAL VOC dataset
with Berkeley annotations of keypoints [3] that contains 20
classes of instances with labeled keypoint locations. This

2The results of [5, 28, 33] are cited from [28].

dataset is considered more difficult than the Willow dataset
because instances may vary from its scale, pose and illumi-
nation, and the number of inliers ranges from 6 to 23.

For fair evaluation we use the same filtered dataset as that
in [28], which contains 7,020 annotated images for training
and 1,682 for testing. As a training sample can be formed
using any two images of the same class, we draw randomly
100,000 samples from each class for training.

The method of affinity generation for the non-learning
algorithms is the same as that in Sec. 5.3. As illustrated in
Table 2, our algorithm outperforms not only non-learning
baselines but also all learning-based baselines. Note that
non-learning algorithms show remarkable inferiority to the
learning-based algorithms on this complex dataset for that
the handcrafted affinity function is unable to capture the
structure consistency due to the noise and outliers.

6. Conclusion
In this paper, we proposed a novel deep learning algo-

rithm for graph matching aiming to improve the match-
ing accuracy. We first convert the problem of building
node correspondences between input graphs to the prob-
lem of selecting reliable nodes from a constructed assign-
ment graph. In order to solve for node classification, we
propose a fully trainable network that embeds the graph
network block module to form structured representations
for each node by convolving its neighborhoods. Moreover,
a new loss function that encodes the one-to-one matching
constraints is proposed to guide the training of our network.
Experimental results reveal that our graph matching algori-
thm gains robustness against noises and outliers, and out-
performs state-of-the-art algorithms.
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