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Abstract

We propose using the inner-distance between landmark

points to build shape descriptors. The inner-distance is de-

fined as the length of the shortest path between landmark

points within the shape silhouette. We show that the inner- @) ©®) ©

distance is articulation insensitive and more effective at

Capturing Comp'ex Shapes W|th part structures than Euc”d_ Figure 1: Three ObjeCtS. The dashed |ineS denote Shortest
ean distance. To demonstrate this idea, it is used to build aPaths within shape boundary that connect landmark points.
new shape descriptor based on shape contexts. After that,

we design a dynamic programming based method for Shapecusses related works. Sec. 3 first gives a model for articu-

matching and comparison. We have tested our approach MNation and proves the articulation insensitivity of the inner-

a variety of shape databases including an articulated Shaloedistance. Then the inner-distance’s ability to capture part

dataset, MPEG7 CE-Shape-1, Kimia silhouettes, a Swedish . .
) ) structures and computational issues are addressed. Sec. 4
leaf database and a human motion silhouette dataset. In all

: . describes the extension of the shape context using the inner-
the experiments, our method demonstrates effective perfor-;. : : X
. . distance, and gives a framework for using dynamic pro-

mance compared with other algorithms. . X ; 4
gramming for silhouette matching and comparison. Sec. 5

presents and analyzes all experiments. Sec. 6 concludes.

1 Introduction
2 Related Work

Classification of complex shapes with part structures is an
important problem in computer vision. However it is diffi- We will first discuss two works most closely related to this
cult to capture part structures. To attack this problem, we paper. One is the use of geodesic distances for bending in-
propose using théner-distance defined as the length of  variant representation of 3D objects [5]. The other is the
the shortest path within shape boundaries, to build shape deshape context [2] for 2D shapes. After that, some other
scriptors. We show that the inner-distance is insensitive towork that handles part structures is discussed.
shape articulations and it is often more discriminative than  Qur work is partly motivated by Elad and Kimmel's
the Euclidean distance for complex shapes. For examplework [5] of using geodesic distances for 3D surface com-
in Fig. 1, although points on (a) and (c) have similar spatial parison through multidimensional scaling (MDS). Their key
distributions, they are quite different in their part structures. idea is that the geodesic distance is bending invariant, which
On the other hand, (b) and (c) appear to be from same catis quite similar to the 2D articulation invariance in which
egory with different articulations. The inner-distances be- we are interested. However, the direct counterpart of the
tween the two marked points are quite different in (a) and geodesic distance in 2D reduces to the distances along the
(b), while almost the same in (b) and (c). contours, which obviously is not useful. On the other hand,

The inner-distance is a natural replacement for the the inner-distance may also be extended to 3D shapes.
Euclidean distance in shape descriptors. We use it to extend The shape contextvas introduced by Belongie et al.
shape contexts [2]. Based on the new descriptor, we deq{2]. It describes the relative spatial distribution (distance
sign a dynamic programming method for silhouette match- and orientation) of landmark points around feature points.
ing that is fast and accurate. The proposed method is testedombined with the thin-plate-spline [3], the shape context
on a variety of shape databases. Excellent performance igs demonstrated to be very discriminative. [13] extended
achieved on all of them compared to other algorithms. the shape context by adding statistics of tangent vectors at

The rest of the paper is organized as follows. Sec. 2 dis-landmark points. [22] suggested including a figural conti-



nuity constraint. [23] applied shape context and softassign 3. diam(Jij)<e, where diam(P) is defined as
[4] for fast and effective shape matching. In this paper, we diam(P)=maz, yep{d(z,y; P)} for a point set
extend the shape context by using the inner-distance to mea- ~ PCR?. And >0 is very small compared to the size

sure the spatial relations between points on shapes. of the articulated parts. A special case is 0, which
Roughly speaking, current methods for handling part means all junctions degenerate to single points@nd
structures fall into two categories, supervised and unsuper- is called andeal articulated object

vised. The supervised methods explicitly build models for ~ The articulation of objec® is a one-to-one mapping
part structures through training. Then the models are usedfom O to O’ = f(O) C R?, such that:

for retrieval tasks. Examples can be found in [9, 6, 16]. 1. O'isalso an articulated object, with the decomposition
The unsupervised methods do not depend on explicit part O’ = {Ui—: O} U{U,; Ji;}- FurthermoreO; =
models. For example, [1] showed that similarities of part f(0), Vi, 1<i<n are parts o0’ and J;; = f(Ji;),
structure can be captured without the explicit computation ~ Vi7J, 1<i, j<n are junctions in0’. This preserves
of part structure. [20, 18] used shock graphs for shape com-  the topology between the articulated parts.

parison. Some other related work can be found in [8]. 2. f is rigid (rotation and translation only) oW,
Vi, 1<i<n. This means inner-distances within each

part will not change.
3 The Inner-Distance Notes: 1) In the above and following, we use notation
f(P)={f(z) : x € P} for short. 2) It is obvious from the
Now we describe the inner-distance. Consider two points @P0Ve definitions thaf~! is an articulation which maps’

z,y € O, whereO is a shape defined as a connected and 0 O, together with the parts and junctions.
closed subset oR?. The inner-distance betweany, de- Fig. 2 gives some examples of articulated shapes.

noted asi(x, y; O), is defined as the length of the shortest . i
path connecting: andy within O. WhenO is convex, the QY ' \
. . . . \/“( . [V
inner-distance reduces to the Euclidean distance. However, Y [/ R/ W
this is not always true for non-convex shapes (e.g., Fig. 1). pg v W

This suggests that the inner-distance is influenced by part

structure to which the concavity of contours is closely re- Figure 2: Examples of articulated objects. The separated
lated. In the following subsections, we will first show the Yellow segments are parts and the blue ones are junctions.
inner-distance’s insensitivity to articulation. Then, through

examples and experiments, we show the inner-distance’s

ability to capture part structure. 3.2 Atrticulation Insensitivity of the Inner-
Distance
3.1 A Model of Articulated Objects We are interested in how the inner-distance varies under ar-

ticulation. From Sec. 3.1 we know that changes of the inner-
distance are due to deformations of junctions. Intuitively,
this means the change is very small compared to the size
of parts. Since most pairs of points have inner-distances
comparable to the sizes of parts, the relative change of the
inner-distances during articulation are small. This roughly
explains why the inner-distances are articulation insensitive.
We use the following notation: 1)'(z1,x2; P) denotes
a shortest path from, P to zo€ P for a closed and con-

Before discussing the articulation insensitivity of the inner-
distance, we need to give a model of articulated objects.
Intuitively, when a shap@ is said to have articulated parts,
it means 1)O can be decomposed into some parts, say,
01,09, ...,0,; 2) The junctions between parts are very
small compared to the parts they connect; 3) The articu-
lation onO as a transformation is rigid when limited to any
partO;, but can be non-rigid on the junctions; 4) The new

shapeO gch|eved from qrt|culat|on ab is again an artic nected point sePCR? (s0 d(z1,z2: P) is the length of
ulated object and can articuldtackto O. ] P : . )
Based the ab ntuiti defi ticulat dC(I’l,IQ,P)). 2)’ indicates the image of a point or a point
ased on the above intuition, we define an articulated ., underf, e.g., P'=f(P) , p'=f(p) . 3)“ and ]’ de-

. 5 . i . i
objectO C R of n parts together with an articulatighas: note the concatenation of paths.

O = {Ui=1 Oi} UlUiy; Jij 1, where Let us first point out two facts about the inner-distance
1. Vi, 1<i<n, partO;CR? is connected and closed, and  jithin a part or crossing a junction. Both facts are direct
0,N0; = O, Vi#j, 1<i, j<n. results from the definitions in sec. 3.1.
2. Vi#j,1<i, j<n, J;;CR?, connected and closed, is the L ,
junction betweenO,; and O,. If there is no junc- d(z,y; 0;) = d(z',y"; O0;), Vo, y€0;,1<i<n (1)
tion betweenO; andO;, thenJ;; = @. Otherwise, |d(z,y; 0) —d(z',y'; O")| < e, Vx,y € Jiyj, @
Ji;NO:#D, Ji;N0;7D. Vi j, 1<i, j<n, Jij # O



Note that (2) does not require the shortest path between

x,y to lie within the junctionJ/;;. Now for general cases,
x,y€0, we have the following theorem:

Theorem: Let O be an articulated object arfdbe an artic-
ulation of O as defined in sec. 3.Ivx, y€O, suppose the
shortest patlt’(z, y; O) goes throughn different junctions
in O andC(z',y’; O") goes throughn' different junctions
in O, then

|d(x,y;0) — d(a',y';O")| < max{m,m'}e 3)

Proof: The proof uses the intuition mentioned above. First
we decompos€’(z, y; O) into segments. Each segment is
either within a part or across a junction. Then, applying (1)

and (2) to each segment leads to the theorem. In the proof
we assume all shortest paths are unique. This does not aﬁ‘ecb

the result since only lengths of paths are concerned.
First,C(z, y; O) is decomposed intbsegments:

0(5177%0):[0(1)071)17R1)7C(p1 7p2;R2)7"'7C(pl—17pl;Rl)}

by point sequencepgpi,...,p; and regions R, ..., R;
achieved via the following steps:
Dpo—=x, i<0
2)WHILE p;#y, DO
1—1i+ 1
R; < the region (a part or a junctio)(x, y; O)
enters aftep;_,
IF R; = Oy for somek (R; is a part):
Setp; as a point in0; such that:
1) C(pi—1,pi; Or) € C(x,y;0)
2) C(zx,y; O) enters a new region (a part or a
junction) afterp; or terminate ap; (= ¥)
ELSER; = J,; for some r,s R; is a junction):
Setp; as the point in/,;(\C(z, y; O) such that
C(z,y; O) never reenterd, ., afterp;.
R; < the union of all the parts and junctions
C(pi—1, pi; O) passes through (notk;CR;).
3) i
An example of this decomposition is shown in Fig. 3 (a).
With this decompositiond(x, y; O) can be written as:

Zlgigld(piq,pi;f{i)

Supposen; of the segments cross junctions (i.e., not con-
tained in any single part), then obvioushy, <m.

In O’, we construct a path fron? to ¢’ corresponding to
C(z,y; O) as follows (e.g. Fig. 3 (b)):

d(z,y;0)

"y ,0N=[C(po.p'1;R"),C(p'1,p'2; RY),....C(p1_1.0): R)]

Denoted(z', y'; O') as the length of (', y/; O'), it has the
following property due to (1), (2):

ld(z,y;0) —d(z',y"; O")| < mie < me (4)

Figure 3: (a) Decomposition @f (z, y; O) (the dashed line)
with x = pg, p1,p2,p3 = y. Note that a segment can go
through a junction more than once (e.gip»). (b) Con-
struction ofC(z',y’; O’) in O’ (the dashed line). Note that

C(z',y'; 0') is not the shortest path.

On the other hand, sinc® can be_articulated from
" through !, we can constructC(z,y;O) from
C(z',y';0') in the same way as constructinz’, y/; O')
from C(z,y; O). Then, similar to (4), there is

d(2',y"; O") — d(x,y;0)| < m'e (5)

Combining (4) and (5),

d(iU, Y; O) - mIESJ(xa Y; O) - mIESd('T/a y/v O/)

<d(z',y';0")<d(z,y; O) + me

This implies (3) #
From (3) we can make the following remarks con-
cerning the changes of inner-distances under articulation:
1. The inner-distance is strictly invariant for ideal articu-
lated objects. This is obvious sinee= 0.

2. Sincec is very small, for most pairs aof, y, the relative
change of inner-distance is very small. This means the
inner-distance is insensitive to articulations.

3.3 Inner-Distances and Part Structures

In addition to articulation insensitivity, we believe that
the inner-distance captures part structures better than the
Euclidean distance. This is hard to prove because the de-
finition of part structure remains unclear. Instead we sup-
port the idea with examples and experiments. Figures 1, 4
and 7 show examples where the inner-distance distinguishes
shapes with parts while the Euclidean distance meets trou-
ble.

During retrieval experiments using several shape data-
bases, the inner-distance based descriptors all achieve ex-
cellent performance. Through observation we have found
that some databases (e.g., MPEG?7) are difficult for retrieval
mainly due to the complex part structures in their shapes,
though they have little articulation. These experiments
show that the inner-distance is effective at capturing part
structures (see Sec. 5.2 and Figures 7 and 10 for details).
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Figure 4: With the same sample points, the distributions of Figure 6: The inner-anglé between two boundary points.
Euclidean distances between all pair of points are virtually

indistinguishable for the four shapes, while the distributions

of the inner-distances are quite different. Where the bins uniformly divide the log-polar space. The
distance between two shape context histograms is defined
o Yt using they? statistic as in (9).
( » D({ ){\ \) For shape comparison, [2] used a framework combining
J - et .
g \\\\:j// \\'\\5//‘” S shape context and thin-plate-spline[3] (SC+TPS). Given the

points on two shaped and B, first the point correspon-

i o . dences are found through a weighted bipartite matching.
Figure 5: With abqut the same .num'ber of sample pomj[s, theThen, TPS is used iteratively to estimate the transformation
four shapes are virtually indistinguishable using Euclidean panveen them. After that. the similariy betweenA and

distances, as in Fig. 4. However, their distributions of the 5 is measured as a weighted combination of three parts
inner-distances are quite different except for the first two

shapes. Note: 1) None of the shapes has (explicit) parts. 2) D =1.6D,, + Dy + 0.3Dp, (7)
More sample points will not affect the above statement.
WhereD,. measures the appearance differentg. mea-
. o sures the bending energy. Thg,. term, named thehape
Aside from part structures, examples in Fig. 5 show cases;gntext distancén [2], measures the average distance be-
where the inner-distance can better capture the topology ofyyeen a point ont and its most similar counterpart @h(in
shapes without parts. We expect further studies on the relaspe sense of (9)). The SC+TPS is shown to be very effec-
tionship between inner-distances and shape in the future. e for shape matching by tests [2] on the MNIST database
[11], MPEG7 CE-Shape-1, and others.

3.4 Computing the Inner-Distance

A natural way to compute the inner-distance is using short-4-2  Extension of Shape Context

est path algorithms. This consists of two steps: 1) Build @ 1q extend the shape context defined in (6), we redefine the
graph on the sample points. For each pair of sample pointsying with the inner-distance. The Euclidean distance is di-
x,y, if the line segment connecting andy falls entirely  recyy replaced by the inner-distance. For the orientation

within the object, then build an edge betweeandy with bins, the relative orientation between two points can be de-
the weight equal to the Euclidean distarioe— y|[. 2) AD-  fined as the tangential direction at the starting point of the
ply a shortest path algorithm to the graph. shortest path. However, this tangential directisrsensi-

tive to articulation. Fortunately, for boundary points, the
angle between the contour tangent at the start point and the
tangential direction of the shortest path from it is insensi-
Now that the inner-distance is ready, we apply it to extend tiv_e to articula}tion (invariant to ideal a}rticulation). Wg call
the shape context [2] for shape matching and comparison IS angle thenner-angle(e.g., see Fig. 6) and use it for
There are other ways to use the inner-distance of coursef‘he 0r|e_ntat|on bins. This is equivalent to_usmg the relatl_ve
One way is to apply MDS as in [5]. Another way is to use frame, i.e., the local coordinate system is rotated to align

the shape distributiorf14]. We choose shape context be- with the tanggnt "’_‘t thg sample_ point. This is suggested in
cause it is highly discriminative and it is naturally extended [2] 10 getrotation invariance. Fig. 7 shows examples of the
with the inner-distance. shape context computed by the two different methods.

In the following the shape context in [2] is called SC and
the extension with inner-distance IDSC.

4 Matching and Retrieval

4.1 Previous Work on Shape Context

Givenn sample points;y, s, ..., z,, on a shape, the shape 4.3 Shape Matching Through Dynamic Pro-
context [2] at pointz; is defined as a histogra; of the gramming

relative coordinates of the remaining- 1 points . _ o
We are interested in contour matching in this paper. The

hi(k) =#{z; : j #i,x; —z; € bin(k)} (6) matching problem is formulated as follows: Given two



our experiments show that, = 4 or 8 is good enough and
larger n, does not demonstrate significant improvement).
The complexity is stillO(nsn?) = O(n?).

Bipartite graph matching is used in [2] to find point cor-
respondencer. Bipartite matching is more general since
it minimizes the matching cost (8) without additional con-
straints. For example, it works when there is no ordering
constraint on the sample points (while dynamic program-
ming is not applicable). For sequence points along silhou-
ettes, however, dynamic programming matching is more ef-
ficient and accurate since it uses the ordering information.
Figure 7: Shape context (SC) and inner-distance shape con-
text (IDSC). The top row shows three objects from the 4.4 Shape Distances
MPEG?7 database (Sec. 5.2), with two marked pojntg
on each shape. The next rows show (from top to bottom),Once the matching is found, we use the matching cost
the SC abp, the IDSC atp, the SC ay, the IDSC af;. Both H(m) as in (8) to measure the similarity between shapes.
the SC and the IDSC use local relative frames. In the his-One thing to mention is that dynamic programming is
tograms, the x axis denotes the orientation bins and the yalso suitable for shape context. In the following, we use
axis denotes log distance bins. IDSC+DP to denote the method of using dynamic program-
ming matching with the IDSC, and use SC+DP for the sim-
ilar method with the SC.

In addition to the excellent performance demonstrated in
the experiments, the IDSC+DP framework is simpler than
the SC+TPS framework (7) [2]. First, besides the size of
shape context bins, IDSC+DP has only two parameters to
tune: 1) The penalty for a point with no matching, usu-

) ally set to 0.3, and 2) The number of start points for
the match cost/(w) defined as different alignments during the DP matching, usually set to
H(r) = Zl<v< C(i,m(3) @8) ;1 or 8. Second, IDSC+DP is easy to implement,. since it
<i<n oes not require the appearance and transformation model

whereC(i,0) = 7 is the penalty for leaving; unmatched, &S well as thg itgration and outl'ier gontrol. Eurthermorg,
and forl < j < m, C(i, j) is the cost of matching; to ;. Fhe DP matching is fast_er t_han_ bipartite matching, which is
This is measured using thé statistic as in [2] |mportarjt for shape rgtnevmg in large shape dgtabases.
The time complexity of the IDSC+DP consists of three
Cli j)EEZ [ha,i(k) — hp,j(k)]? ©) parts. First, the computation of inner-distances can be
’ 24~1<k<K hy (k) + hp ;(k) achieved inO(n?) with Johnson or Floyd-Warshall's short-

est path algorithms, where is the number of sample
points. Second, the construction of the IDSC histogram
takesO(n?). Third, the DP matching cos(n?), and only
this partis required for all pairs of shapes. In our experiment
using partly optimized Matlab code on a regular Pentium IV
2.8G PC, a single comparison of two shapes wits 100
takes about 0.31 second.

SCatp

IDSC at p

SCatyg

N

IDSC at g

shapesd and B, describe them by point sequences on their
contour, sayp;ps...p, for A with n points, andg;¢s...q¢,,

for B with m points. Without loss of generality, assume
n > m. The matchingr betweenA and B is a mapping
from1,2,...,nto1,2,...,m, wherep; is matched t@ ;) if
7(i) # 0 and otherwise left unmatched.should minimize

~—

Hereh,,; andhp ; are the shape context histogramsgppf
andg; respectively, and( is the number of histogram bins.
Since the contours provide orderings for the point se-
quenceips...pn andqigs...qm, it is natural to restrict the
matchingr with this order. To this end, we use dynamic
programming to solve the matching problem. Dynamic pro-
gramming is widely used for contour matching. Details can
be found in [1, 15] for example.
By default, the above method assumes the two contoursg Experiments
are already aligned at their start and end points. With-
ogt this assumptlon., one S|mplg solution is to try different 51 Articulated Database
alignments at all points on the first contour and choose the
best one. The problem with this solution is that it raises To show the articulation insensitivity of the inner-distance,
the matching complexity fronO(n?) to O(n?). Fortu- we test the proposed method IDSC+DP on an articulated
nately, for the comparison problem, it is often sufficient to shape data set we collected. The dataset contains 40 im-
try aligning a fixed number of points, say, points. Usu- ages from 8 different objects. Each object has 5 images
ally n, is much smaller tham andn (with n, m = 100, articulated to different degrees (see Fig. 8). The dataset is
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Figure 9: Typical shape images from the MPEG7 CE-
Figure 8: Articulate shape database. This dataset containsShape'l’ one image from each class.

40 images from 8 objects with articulation. Each column

contains five images from the same object. Table 2: Retrieval rate (bullseye) of different methods for

the MPEG7 CE-Shape-1.

Table 1: Retrieval result on the articulate dataset Algorithm| _ CSS[12] | Visual Parts[10] SC+TPS[2]
Distance Type| Top 1| Top 2 | Top 3 | Top 4 ' Score 75.44% 76.45% 76.51%
SC+DP 20/40 | 10/40| 11/40 | 5/40 Algorithm | Curve Edit[17] Gen. Model[23] IDSC+DP
IDSC+DP | 40/40 | 34/40 | 35/40 | 27/40 Score 78.17% 80.03% 85.40%

very challenging because of the similarity between different (s = 8) are used in the DP matching and the penalty fac-

objects (especially the scissors). The holes of the scissord®' 7 IS set to be 0.3. To handle mirrored shapes, we com-
make the problem even more difficult. pare two point sequences (corresponding to shapes) with the

For each image, we sample 200 points along its Outeroriginal order and reversed order. Table 2 lists reported re-

contour. For the SC and IDSC, 5 log-distance bins and 12sults from different algorithms. It shows that our algorithm
orientation bins are used. Since all the objects are at the_ou_tperforms allthe alternatives. The speed of our algorithm
same orientation, we align the contours by forcing them to 'Sd'.?dt.h(ta samel;ang((aj as thost(_a of shgple Zc??ntexts [2], curve
start from the bottom-left points and then set = 1 for edit distance [17] and generative model [23].

DP matching. For comparison, we also applied the SC+DP To help understand this performance, we did two other
method with the same parame:[ers experiments in the same settings where the only difference

. - is the descriptors used: one uses SC, another IDSC. The
For each image, the 4 most similar matches are chosen

. i : . parameters in both experiments are: 64 sample points on

from other images in the dataset. The retrieval result is sum- . . . . . .
X ... each silhouette, 8 distance bins and 8 orientation bins. To

marized as the number of 1st, 2nd, 3rd and 4th most similar_ "~ . .
i avoid the matching effect, shapes are compared using the
matches that come from the correct object. Table 1 shows . ;
: ; simple shape context distance measiltg (see Sec. 4.1 or

the retrieval results. It demonstrates that our method is very

. . . ) . [2]). The Bullseye score with SC is 64.59%, while IDSC
effective for objects with articulated parts, while the shape : . ;
. ) . get a higher score of 68.83%. Fig. 10 shows some retrieval
context is not very suitable for this data set.

results, where we see that the IDSC is good for objects
with parts while the SC favors global similarities. Exam-
ination of the MPEG7 data set shows that the complexity
of shapes are mainly due to the part structures but not artic-
The widely tested MPEG7 CE-Shape-1 [10] database con-ulations, so the good performance of IDSC shows that the
sists of 1400 silhouette images from 70 classes. Each clastnner-distance is more effective at capturing part structures.
has 20 different shapes (see Fig. 9 for some examples). The
recognmop rate is measured by thg so called Bgllseye test.5_3 Kimia’s database
For every image in the database, it is matched with all other
images and the top 40 most similar candidates are countedThe IDSC+DP is tested on two shape databases provided
At most 20 of the 40 candidates are correct hits. The scoreby Kimia's group [19, 18]. The first database [19] contains
of the test is the ratio of the number of correct hits of allim- 25 images from 5 categories (Fig. 11). It has been tested by
ages to the best possible number of hits (which is 20x1400).[2, 19, 7]. In our experiment, 100 sample points are used for
In our experiment, we use 5 distance bins and 12 ori- each silhouette, 5 distance bins and 12 orientation bins are
entation bins as in [2], but only 100 sample points (300 used in IDSC, ana,; = 4,7 = 0.3 are used in DP match-
were used in [2]) on each contour. 8 different start points ing. The retrieval result is summarized as the number of 1st,

5.2 MPEGTY Shape Database
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IDSC on the MPEG?7 data set. The left column show two
shapes to be retrieved: a beetle and an octopus. The fou
right rows show the top 1 to 9 matches, from top to bottom:
SC and IDSC for the beetle, SC and IDSC for the octopus.
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Figure 11: Kimia dataset 1 [19]: this dataset contains 25
instances from 5 categories.

f:igure 12: Kimia dataset 2 [18]: this dataset contains 99
instances from 9 categories.

Figure 13: Typical images from Swedish leaf data base, one
image per species. Note that some species are quite similar,
e.g. the 1st, 3rd and 9th species.

5.4 Swedish Leaf Database
Table 3: Retrieval result on Kimia dataset 1 [19] (Fig. 11).

Method Topl| Top 2| Top 3 Recently, foliage image retrieval has started to attract re-

Sharvit et. al [19] 23/25 | 21/25 | 20/25 search efforts in computer vision and related areas. The

Gdalyahu and Weinshall[7] 25/25 | 21/25 | 19/25 large variation of leaf shapes and texture make the problem

Belongie et. al [2] 55/25 | 24/25 | 22/25 very challenging. We use the Swedish leaf dataset from a
IDSC+DP 55/25 | 24/25 | 25/25 leaf classification project at Lirdping University and the

Swedish Museum of Natural History [21]. The dataset con-
tains isolated leaves from 15 different Swedish tree species,
with 75 leaves per species. Fig. 13 shows some silhouette
examples. Some initial classification work has been done
in [21] by combining simple features like moments, area
and curvature etc. Using 25 training samples and 50 testing
samples per species, an average classification rate of 82%
is reported. We tested with Fourier descriptors, SC+DP and
IDSC+DP with the same size of training and testing set and
128 points on each silhouette. For SC and IDSC, we use
8 log-distance bins and 12 orientation bins; for DP match-
ing, we setny, = 1 andr = 0.3. With 1-nearest-neighbor,
2nd and 3rd closest matches that fall into the correct cate-the classification rates are 89.60% using Fourier descriptors,
gory. Our result is 25/25,24/25,25/25, which outperforms 88.12% using SC+DP and 94.13% using IDSC+DP.

the other three reported results shown in Table 3.

Table 4: Retrieval result on Kimia dataset 2[18] (Fig. 12).
Gen. model is due to [23] and shock edit is due to [18].
Algorithm | 1st 2nd 3rd| 4th| 5th| 6th| 7th| 8th| 9th|10th
SC[18] |97/ 91|88|85/84|77|75|66|56| 37
Gen. Model99| 97| 99| 98| 96| 96| 94| 83| 75| 48
Shock Edit 99| 99| 99| 98| 98| 97| 96| 95| 93| 82
IDSC+DP| 99| 99| 99| 98| 98| 97| 97| 98| 94| 79

The sec_ond database [18] contains 99 images from 9 caly 5 Human body matching

egories (Fig. 12) and has been tested by [18, 23]. In our

experiment, 300 sample points are used for silhouettes, 8n this experiment, we demonstrate the potential for using
distance bins and 12 orientation bins are used in IDSC, andthe proposed method on human body matching, which is
ns = 4,7 = 0.3 are used in DP matching. Similar to results important in human motion analysis. The dataset is a hu-
described above, the retrieval result is summarized as theman motion sequence from a stationary camera (from the
number of top 1 to top 10 closest matches (the best possiblékeck lab). Silhouettes are extracted with background sub-
result for each of them are 99). Table 4 lists the numbers oftraction. Our task is to match the silhouettes from different
correct matches of several methods, which shows that ouframes. For adjacent frames, IDSC+DP performs very well,
approach performs a little better than others. as demonstrated in the left of Fig. 14. For two silhouettes
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