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Abstract

We propose a novel framework to build descriptors of
local intensity that are invariant to general deformations.
In this framework, an image is embedded as a 2D surface
in 3D space, with intensity weighted relative to distance in
x-y. We show that as this weight increases, geodesic dis-
tances on the embedded surface are less affected by image
deformations. In the limit, distances are deformation invari-
ant. We use geodesic sampling to get neighborhood samples
for interest points, then use a geodesic-intensity histogram
(GIH) as a deformation invariant local descriptor. In ad-
dition to its invariance, the new descriptor automatically
finds its support region. This means it can safely gather
information from a large neighborhood to improve discrim-
inability. Furthermore, we propose a matching method for
this descriptor that is invariant to affine lighting changes.
We have tested this new descriptor on interest point match-
ing for two data sets, one with synthetic deformation and
lighting change, another with real non-affine deformations.
Our method shows promising matching results compared to
several other approaches.

1. Introduction

We propose a novel framework for building image de-
scriptions that are invariant to deformations. An intensity
image is treated as a surface embedded in 3D space, with the
third coordinate proportional to the intensity values with an
aspect weight α and the first two coordinates proportional
to x-y with weight 1 − α. As α increases, the geodesic
distance on the embedded surface becomes less sensitive to
image deformations. In the limit when α → 1, the geo-
desic distance is exactly deformation invariant. Based on
this idea, we use geodesic sampling to get sample points on
the embedded surface, then build the geodesic-intensity his-
togram (GIH) as a local descriptor. GIH captures the spatial
distribution of intensities on the embedded manifold. With

Figure 1. Two images to be matched. Note
that the right bottom corner of the flag in (b)
is folded.

α = 1, it is exactly invariant to deformation. In match-
ing experiments on data sets with both synthetic and real
deformations, GIH demonstrates promising results in com-
parison to other approaches.

Our work builds on much recent work on invariant local
descriptors. This work has found wide application in ar-
eas such as object recognition [5, 13], wide baseline match-
ing [19, 23], and image retrieval [20]. However, this pre-
vious work focuses on invariance to specific transforma-
tion groups, such as affine transformations. Affine invari-
ant matching is useful when viewpoint changes relative to
a rigid object that has locally planar regions large enough
to contain distinctive intensity variations. It is less appro-
priate for objects without planar parts. For example, with a
white Lambertian object, all intensity variations are due to
3D shape variations that lead to non-affine deformations as
viewpoint changes. We are also interested in matching im-
ages of non-rigid objects, such as a flag waving or an animal
moving its body (see Figure 1).

We make two main contributions. 1) GIH is the first lo-
cal image descriptor that is invariant to general deforma-
tions. 2) Embedding images as surfaces in 3D and varying
their aspect weight provides a novel framework for dealing
with image deformation. This also suggests methods for



finding deformation invariant feature points, and for build-
ing descriptors in which we trade off discriminability and
deformation insensitivity with our choice of α. In addi-
tion, GIH does not require a specific interest region detector,
since geodesic sampling automatically determines regions
for gathering information.

The rest of the paper is organized as follows. Sec. 2 dis-
cusses related works. Sec. 3 discusses deformation invari-
ant features. Sec. 3.1 provides intuitions about deformation
invariance through a 1D example. Sec. 3.2 shows how the
aspect weight α relates to deformations by studying its rela-
tion to curve lengths on embedded image surfaces. Sec. 3.3
talks about geodesic distances and their computation and
Sec. 3.4 explains geodesic sampling. Sec. 3.5 introduces the
proposed descriptor, the geodesic-intensity histogram. Sec.
3.6 discusses several practical issues in using GIH, includ-
ing illumination change, the interest points, and the choice
of α. Sec. 4 describes all the experiments and analyzes the
results. Sec. 5 concludes.

2. Related Work

Mikolajczyk and Schmid [15] gave a review and per-
formance evaluation of several local descriptors including
steerable filters [4], moment invariants [24], complex fil-
ters [19, 1], scale invariant feature transform (SIFT) [14]
and cross-correlation. Most relevant to us are descriptors
that are invariant to image transformations. For example,
Lindeberg [11] proposed extracting scale invariant regions
via the extremum of the scale space. Lowe [14] proposed
a fast and efficient way to compute the scale invariant fea-
ture transform (SIFT), which measures the gradient distrib-
ution in detected scale invariant regions. Mikolajczyk and
Schmid [16] proposed an affine invariant interest point de-
tector through combining a scale invariant detector and the
second moment of Harris corners [6]. Other work on affine
invariant features can be found in [8, 18]

Our method can be categorized with so-called distrib-
ution based descriptors, which use histograms to capture
local image information. These include the spin image
[10, 7], shape context [2], and PCA-SIFT [9]. Our method
differs from all these in two ways. First, our method is in-
variant to all deformations. Second, our descriptor auto-
matically detects its support region, i.e., it does not need a
special deformation invariant detector.

Treating images as 2D surfaces embedded in 3D space is
not new. Our work is particularly motivated by the Beltrami
framework proposed in [22]. They treat images as 2D man-
ifolds and operators on the manifold are applied directly on
the surface for low level vision tasks such image enhance-
ment. Our work focuses more on feature extraction. Also
we are more interested in using large aspect weights to pro-
duce deformation invariance.

Geodesic distance has also been used in object recogni-
tion. For example, in [3] it is used to build bending invariant
signatures for real surfaces. Our work is different in that we
are using embedded surfaces that vary according to aspect
weights. This achieves deformation invariance for 2D im-
ages, as opposed to bending invariance for 3D data.

This work can also be viewed as a general version of our
previous work of using the inner-distance for shape match-
ing [12]. If we treat a given shape as a binary image, the
inner-distance between two boundary points is the same as
the geodesic distance used in this paper for α near 1.

3. Deformation Invariant Features

In this section we first discuss deformation invariance
within the framework of embedded image surfaces, then in-
troduce geodesic sampling and the geodesic-intensity his-
togram, which is invariant to deformation. After that, some
practical issues in using this descriptor are discussed.

3.1. Intuitions about Deformation Invariance

We consider deformation as homeomorphisms (continu-
ous, one-to-one transformations) between two images. In-
tensities change position, but not their value, with deforma-
tions. To obtain distinctive descriptors we collect intensities
from a neighborhood. Our problem is to do this in a way
that is invariant to deformation.

To gain intuition, we consider a one dimensional image.
Figure 2(a) shows two 1D images I1, I2, with height denot-
ing image intensity (dashed lines are the geodesics between
marked points). They look quite different, but they are re-
lated by a deformation (composed of stretching and com-
pressing in different places). Consider the images as 1D
surfaces embedded in a 2D space, where intensity is scaled
by α, the aspect weight and x is scaled by 1 − α. Using
different αs produces the images in Figure 2 (b,c,d). We
see that when α increases, the graphs of the two embedded
images look more and more similar. It is natural to expect
that they become exactly the same as α → 1. One way to
explain this is that α controls the weight on the intensity
compared to the weight on the image coordinate. A larger
α means that we place more importance on the intensity,
which is deformation invariant. So α = 1 leads to a defor-
mation invariant view of the image.

How does α work? Let p1, q1 be two points on I1, with
their deformed counterparts p2, q2 on I2. Consider the geo-
desic distance g1 between p1 and q1 on αI1 and g2 between
p2 and q2 on αI2. Figure 2 (e) shows how g1 and g2 vary
for different α, from which we see that g1 and g2 tend to be-
come similar when α increases. This implies that the geo-
desic distance on the embedded surface tends to be defor-
mation invariant when α → 1.



Figure 2. Deformation invariance for one di-
mensional images. Details in Section 3.1

This provide a solution for the problem of finding defor-
mation invariant neighborhoods. For a given interest point,
we can use the geodesic distance to find and sample within
a neighborhood, and then build a descriptor based on the
intensities of the sampled points. If the procedure is done
with a very large α (in the limit approaching 1), then the de-
scriptor is deformation invariant, which is exactly what we
want.

3.2. Curve Lengths on Embedded Surfaces

In this section we show that as α increases, the lengths
of curves change less and less when an object deforms. Let
I1(x, y) be an image defined as I : R2 → [0, 1]. Let
I2(u, v) be a deformation of I1. Because deformation is
a homeomorphism, and so it is invertible, we can write
u = u(x, y), v = v(x, y), x = x(u, v), y = y(u, v), and
I2(u, v) = I1(x(u, v), y(u, v)).

Denote the embedding of an image I(x, y) with aspect
weight α as σ(I;α) = (x′ = (1−α)x, y′ = (1−α)y, z′ =
αI(x, y)). Denote σ1, σ2 as the embeddings of I1, I2 re-
spectively

σ1=(x′ = (1 − α)x, y′ = (1 − α)y, z′ =αI1(x, y))
σ2=(u′ = (1 − α)u, v′ = (1 − α)v, w′=αI2(u, v))

Let γ1 be a regular curve on σ1, t ∈ [a, b], and γ2 the
deformed version of this curve on σ2

γ1(t) = (x′(t), y′(t), z′(t))
= ((1 − α)x(t), (1 − α)y(t), αI(x(t), y(t)))

γ2(t) = (u′(t), v′(t), w′(t))
= ((1 − α)u(t), (1 − α)v(t), αI(u(t), v(t)))

Where

w′(t) =αI2(u(t), v(t)) =αI(t) =αI1(x(t), y(t)) =z(t)

because the intensity is invariant to deformation,
Now we can study the length of γ1, γ2, denoted as l1, l2

respectively. We have

l1 =
∫ b

a

√
x′2

t + y′2
t + z′2t dt

=
∫ b

a

√
(1 − α)2x2

t + (1 − α)2y2
t + α2I2

t dt (1)

l2 =
∫ b

a

√
u′2

t + v′2
t + w′2

t dt

=
∫ b

a

√
(1 − α)2u2

t + (1 − α)2v2
t + α2I2

t dt (2)

Where the subscripts denote partial derivatives, e.g.,
xt

.=dx/dt, ut
.= ∂u/∂t, etc....

From (1) and (2) it is clear that for a large α, the curve
length is dominated by the intensity changes along the
curve. In the limit when α → 1, l1, l2 converge to the same
value. Also, the length of curves with constant intensities
tend to be trivial compared to lengths of curves with non-
constant intensities.

In the rest of the paper, when talking about deformation
invariance, we implicitly assume that α → 1.

3.3. Geodesic Distance and Level Sets

It follows from the last subsection that the geodesic dis-
tance, which is the distance of the shortest path between
two points on the embedded surfaces, is deformation invari-
ant. Given an interest point p0 = (x0, y0), the geodesic dis-
tances from it to all other points on the embedded surface
σ(I;α) can be computed using the level set framework [21].
Points with identical geodesic distances from p0 are treated
as level curves. For images defined on discrete grids, the
fast marching algorithm ([21]) provides an efficient method
of computing these curves.

Figure 3 shows two example results of the geodesic dis-
tances computed for real images. It shows that when α
is small (in (c),(d)), the geodesic distances are almost like
Euclidean distances in the image plane. With a large α (in



Figure 3. Geodesic distances computed via
fast marching. The marked point in (a) corre-
sponds to the marked point in (b) after defor-
mation. (c),(e) shows the geodesic distances
of all pixels in (a) from the marked point, with
different α’s. Darker intensities mean large
distances. (d),(f) shows the same thing for the
marked point in (b). Note that image struc-
tures of (a) and (c) are captured in the dis-
tance map in (e) and (f).

(e),(f)), the geodesic distance captures the geometry of im-
age intensities and automatically adapts to deformation.

One interesting issue is that since real images are defined
on discrete grids, the fast marching method we use implic-
itly assumes that the surface is piecewise constant (constant
within the region of each pixel). The image can also be in-
terpolated as a smooth surface, in which case the arguments
above still hold.

3.4. Deformation Invariant Sampling

Geodesic level curves provide us a way to find defor-
mation invariant regions surrounding interest points. These
regions can be used as support regions for extracting defor-
mation invariant descriptors. To derive invariant descrip-

Figure 4. 2D geodesic sampling. α = 0.98.
A large ∆ is used for better illustration. The
interest point is the marked star in the cen-
ter of the sampling. The sampled points are
marked on the geodesic level curves.

tors, we must also sample these regions using geodesic dis-
tances, to find deformation invariant sample points. In the
following ∆ is used to denote the sampling interval.

Geodesic sampling for 2D images is done in two steps.
First, the level curves are extracted at intervals of ∆. Sec-
ond, points are sampled from each level curve at intervals
of ∆. Figure 4 gives examples of 2D geodesic sampling.
Note that the sampling along uniform intensity regions is
sparser than along regions with large intensity variation. In-
tuitively, this implies that deformations (such as stretching)
will not change the number of sample points, although it
may change their locations. We sample densely, so that
changes in the location of sample points do not have much
effect on the resulting histogram.

3.5. The Geodesic-Intensity Histogram

Now we introduce the geodesic-intensity histogram
(GIH), which is a deformation invariant descriptor extracted
from geodesic sampling. It captures the joint distribution of
the geodesic distance and the intensity of the sample points.
Since both the geodesic distance and the intensity are defor-
mation invariant, so is the GIH. It is based on spin images,
which produce a related descriptor using Euclidean distance
([7, 10]).

Given an interest point p, together with a sample point
set Pp obtained via geodesic sampling, the GIH Hp at p is



a normalized two dimensional histogram obtained through
the following steps:

1. Divide the 2D intensity-geodesic distance space into
K×M bins. Here K is the number of intensity in-
tervals, and M the number of geodesic distance inter-
vals. The geodesic intervals can be segmented either
linearly or at log scale.

2. Insert all points in Pp into Hp: ∀1≤k≤K,∀1≤m≤M ,
Hp(k,m) = #{q∈Hp : (I(q), g(q))∈B(k,m)}
Here I(q) is the intensity at q, g(q) is the geodesic dis-
tance at q (from p), and B(k,m) is the bin correspond-
ing to the kth intensity interval and the mth geodesic
interval.

3. Normalize each column of Hp (representing the same
geodesic distance). Then normalize the whole Hp.

Figure 5 displays examples of the geodesic-intensity his-
tograms of two points with deformation. The two his-
tograms are quite similar, although the deformation be-
tween the two images is quite large.

Figure 5. Geodesic-intensity histograms, α =
0.98, K = 10, M = 5. (a), (b) for points in
Figure 3 (a),(b) respectively.

Given two geodesic-intensity histogram Hp,Hq , the
similarity between them is measured using the χ2 distance:

χ2(p, q)≡1
2

∑K

k=1

∑M

m=1

[Hp(k,m) − Hq(k,m)]2

Hp(k,m) + Hq(k,m)
(3)

3.6. Practical Issues

Dealing with illumination change. We use an affine model
for lighting change ([15]), i.e., aI(x, y) + b for the illumi-
nation change of the pixel at (x, y). There are two steps
to make GIH insensitive to lighting change. 1) GIH is
made invariant to lighting in the same way as [15]. That
is, when building the histogram, the intensity is normal-
ized by subtracting the mean and then divided by the stan-
dard deviation, where the mean and deviation is estimated
on the sampled point set Hp. 2) Compensate for the effect
of lighting change on the geodesic sampling. For large α,
the intensity change dominates the geodesic distance (1,2).

So the change of geodesic distance is approximately linear
with rate a under the lighting model, which is equivalent to
changing α to aα. So when we compare two interest points,
we compare several GIH’s that use different α’s, and pick
the match with minimal χ2 distance (3).
Interest points. GIH does not require a special interest
point detector since it automatically locates the support re-
gion. However, there are problems with using some feature
points. First, deformation invariance makes points within a
constant region indistinguishable. Second, for real images
the intensity on edges or corners may vary due to sampling.
We have found that extreme points, where images have lo-
cal intensity extremum, are less affected by the above fac-
tors (they are locally unique in the continuous cases). The
extreme point can be viewed as a deformation invariant ver-
sion of the DoG point proposed by Lowe [14], which is
scale invariant. In Sec. 4.3 we tested the performance of
GIH using several different interest point operators.
Choosing α. In the following experiments we will use a
very large α (0.98) because we want to deal with large de-
formations. However, in domains involving only small de-
formations, a relatively smaller α might be a better choice.
Smaller α’s can lead to descriptors that are somewhat insen-
sitive to deformations, but that provide more information
since they do not treat images related by large deformations
as identical. It is obvious that GIH with α = 0 becomes
equivalent to spin images [10, 7].

4. Experiments

In this section we will describe our experiments using the
GIH for interest point matching. Experiments were con-
ducted on two groups of image pairs. One contains syn-
thetic deformation as well as illumination change, the other
contains real non-affine deformations. We have two exper-
iments. The first one compares the GIH’s matching ability
to several other approaches. The second experiment stud-
ies the performance of GIH using several different kinds of
interest points including the proposed extreme points.

4.1. Experimental Setup

Data set We evaluate the proposed method using two
groups of images. The first group contains eight image
pairs with synthetic deformation and illumination change
(see Figure 9, the original images are from the Berkeley seg-
mentation dataset 1). The deformation is created by map-
ping the original images to non-flat surfaces and viewing
them from different viewpoints. The lighting change is gen-
erated through an affine model (intensities limited to [0..1]).
The second group contains three pairs of images with real
deformations (see Figure 10).

1http://www.cs.berkeley.edu/projects/vision/grouping/segbench/



Interest point We use Harris-affine points [16] for the
matching experiments. The interest point is detected using
the online code provided by Mikolajczyk [17]. One reason
for this choice is its affine invariance. This makes the other
descriptors invariant to affine transformation, although it is
not necessary for our descriptor. The other reason is that
[17] also provides executable codes for several state-of-art
descriptors that we can use for comparison. For each im-
age, we pick the 200 points extracted by the detector with
the largest cornerness.
Evaluation criterion For each pair of images together with
their interest points, we first obtained the ground truth
matching (automatically for synthetic images, manually for
real images). Then, for efficiency we removed those points
in image 1 with no correct matches. After that, every inter-
est point in image 1 is compared with all interest points in
image 2 using the descriptors to be compared. An interest
point p1 in image 1 is treated as a correct match of another
point p2 in image 2 if the deformation of p1 is within a three
pixel distance of p2. The detection rate among the top N
matches is used to study the performance. The detection
rate is defined in a way similar to [15]:

r =
#correct matches

#possible matches
=

#correct matches

#points in image 1
(4)

4.2. Matching Experiment

In this experiment we will study the performance of GIH
in comparison with several other methods. The experiments
are conducted on both the synthetic and real deformation
data sets. All of them use the Harris-Affine interest point.

Mikolajczyk and Schmid [15, 17] provided convenient
online code for several state-of-the-art local descriptors.
The descriptors are normalized to enable direct comparison
using sum of square differences (SSD). Benefitting from
their code, we compare the geodesic-intensity histogram
with steerable filters [4], SIFT [14], moments invariants
[24], complex filters [19] and spin images [10].

The main difference between the evaluation here and
that in [15] lies in that [15] focused more on the evalua-
tion of region-like descriptors. For example, some of their
experiments use interest regions instead of interest points.
Furthermore, their matching criterion between two features
is also related to their support regions. Also note that the
Harris-Affine point is chosen because it provides affine in-
variant support regions to the descriptors we will compare
to, although it is not necessary for GIH (see Sec. 4.3).

We tested two versions of the geodesic-intensity his-
togram. Version one uses α = 0.98,K = 13,M = 8.
This tests the ability of the GIH. The other version is a de-
generate version where α = 0,K = 10,M = 5. This
demonstrates that GIH becomes like spin images for α = 0.

Figure 6. Experiment results on the synthetic
deformation data set (see Figure 9).

Figure 7. Experiment results on the real de-
formation data set (see Figure 10).

A Receiver Operating Characteristics (ROC) based cri-
terion is used which is similar to the one in [15]. Instead
of using the false positive rate, we study the detection rates
among the top N matches, as N varies.

Figure 6 displays the ROC curves for the experiment on



the synthetic deformation data set and Figure 7 for the real
deformation data set. From the ROC curves we can see that
GIH performs better than other methods in both data sets
regardless of illumination changes. Note that for α = 0,
the performance drops a lot, with the performance similar
to spin images (with no affine invariant support region).

4.3. Interest Points

This experiment is to test the performance of GIH us-
ing several kinds of interest points. In addition to extreme
points and DoG [14] points, we also tested on Harris corners
[6] and Harris-Affine points [16]. We use the code provided
at [17] except for the extreme points. The experiment is
conducted on the synthetic deformation data set. For each
image, 200 points are picked with the largest detector re-
sponses (cornerness, for example). For extreme points, the
response is computed through Laplace-of-Gaussian filter-
ing. The same parameters for GIH are used for all kinds of
interest points, α = 0.98,K = 13,M = 8.

Since different interest point detectors may generate dif-
ferent number of correct correspondences, the ROC curves
is plotted as the detection rate versus the false positive rate
instead of N as in the previous experiment. The false posi-
tive rate is defined as (similar to [15])

rfalse =
#false matches

(#points in image 1)(#points in image 2)

Figure 8 shows the ROC curves. From the figure we can see
that GIH works better than the others for small false positive
rate less than 0.03 (this roughly corresponds to the top 6
matches). For large false positive rates, DoG performs the
best. The Harris corner works the worst with GIH, which is
consistent with our previous discussion.

5. Conclusions

In this paper we proposed a novel deformation invariant
feature, the geodesic-intensity histogram, for intensity
images. Images are treated as 2D surfaces embedded in 3D
spaces. We then showed that the geodesic distance along
the surface is invariant to deformation when the embedding
aspect weight α → 1. The geodesic-intensity histogram
is a 2D histogram measuring the geodesic distances and
the intensities surrounding an interest point. With the
geodesic sampled neighborhood points and an α → 1,
the proposed histogram becomes deformation invariant.
After that, we discussed practical issues including how to
deal with illumination change and the option of choosing
α to balance deformation invariance and discriminativity.
The proposed descriptor is tested on data sets with both
synthetic and real deformations. In all the experiments the
new descriptor performs excellently in comparison with

Figure 8. GIH using different kinds of interest
points. The false positive rate 0.04 roughly
corresponds to N = 8 as in Figure 7 and 6.

several other methods.
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