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We study several problems in image retrieval systems. These problems and pro-
posed techniques are divided into three parts.

Part I: This part focuses on robust object representation, which is of fundamental
importance in computer vision. We target this problem without using specific object mod-
els. This allows us to develop methods that can be applied to many different problems.
Three approaches are proposed that are insensitive to different kind of object or image
changes. First, we propose using the inner-distance, defined as the length of shortest
paths within shape boundary, to build articulation insensitive shape descriptors. Sec-
ond, a deformation insensitive framework for image matching is presented, along with
an insensitive descriptor based on geodesic distances on image surfaces. Third, we use a
gradient orientation pyramid as a robust face image representation and apply it to the task
of face verification across ages.

Part I This part concentrates on comparing histogram-based descriptors that are
widely used in image retrieval. We first present an improved algorithm of the Earth
Mover’s Distance (EMD), which is a popular dissimilarity measure between histograms.
The new algorithm is one order faster than original EMD algorithms. Then, motivated
by the new algorithm, a diffusion-based distance is designed that is more straightforward

and efficient. The efficiency and effectiveness of the proposed approaches are validated

1This work is supervised by Dr. Kazunori Okada at Siemens Corporate Research during my internship.



in experiments on both shape recognition and interest point matching tasks, using both
synthetic and real data.

Part I1I%: This part studies the thumbnail generation problem that has wide appli-
cation in visualization tasks. Traditionally, thumbnails are generated by shrinking the
original images. These thumbnails are often illegible due to size limitation. We study
the ability of computer vision systems to detect key components of images so that intel-
ligent cropping, prior to shrinking, can render objects more recognizable. With this idea,
we propose an automatic thumbnail cropping technique based on the distribution of pixel
saliency in an image. The proposed approach is tested in a carefully designed user study,
which shows that the cropped thumbnails are substantially more recognizable and easier

to find in the context of visual search.

2Part of this work is jointly done with Bongwon Suh under supervision of Professor Ben B. Bederson.
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Part |

Robust Descriptors for Object Recognition



In this dissertation we describe our study on several problems in computer vision
and image retrieval. The whole dissertation contains three parts. The first part describes
three robust object representations, focusing on shape articulation, image deformation and
an application to face verification across age respectively. The second part proposes two
robust and efficient approaches for comparing histogram-based descriptors that are widely
used in computer vision tasks. The third part introduces a novel automatic thumbnail

cropping technique based on visual attention models.

Chapter 1
Introduction to Part |

1.1 Deformation in Computer Vision

According to the Merriam-Webster Online Dictionadgformationhas three meanings

1. Alteration of form or shape; also : the product of such alteration.
2. The action of deforming : the state of being deformed.
3. Change for the worse.
Similar definitions can be found in WordNet (http://wordnet.princeton.edu/). The
first two explanations relate to shape change that appears pervasively in computer vision.

The third explanation, seemingly irrelevant to computer vision, happens to imply the

unpleasant consequences brought to computer vision tasks by deformation.

thttp://www.m-w.com/dictionary/deformation



In computer vision, since the inputs are usually images, the definition of deforma-
tion needs to be broadened because image deformations may not necessary reflect true
shape change of the contents of the image. In the following, we discuss several common
examples of deformation in computer vision (see Fig. 1.1), including articulation that is
a special case of deformation, the “deformation” in illumination, and the deformation

caused by viewpoint change.

e Shapes can deform by themselves. A person walks, a flag flies, a leaf grows, a man
gains weight while a woman becomes thinner, etc. Fig. 1.1 (a) and (b) show two

examples.

e Objects from the same category often have similar shapes related by deformation,

usually non-linear, e.g. the two compound leaves in Fig. 1.1 (c)).

e Articulation is a special case of deformation, in that sgragsof objects are rigid
while the geometric relations between parts, throjugictions may change. Fig.
1.1 (d) gives an example of articulation. Articulation often happens together with

other shape changes, e.g. Fig. 1.1 (c).

e As mentioned above, in computer vision, deformation sometimes happens with-
out real shape change. The most important example is the deformation caused by
viewpoint change. Particularly, for non-planar structures, viewpoint change usually

generates non-linear deformation, such as in Fig. 1.1 (f).

¢ In addition to geometric change in images, illumination variation can also be treated

as a special case of deformation, in that the deformation is in the intensity (or color)



space. An example is shown in Fig. 1.1 (d).

e To further generalize the definition of deformation, it can even include other pho-
tometric changes such as texture change. For example, the face of the same person
over years can have different albedos (see Fig. 1.2), and even different geometric

properties (due to wrinkles, etc).

(c) Deformation between objects
of the same class.

(e) “Deformation” caused by (f) Deformation caused by viewpoint change
illumination change. of non-planar structure.

Figure 1.1: Examples of deformation in computer vision.



11 years 7 years 5 years

Figure 1.2: Examples of four images from a person taken at different ages. The true gaps

between neighboring images are indicated under each pair.

The above examples, though far from comprehensive, demonstrate the pervasive-
ness of deformation in computer vision. Not surprisingly, it attracts a lot of research
efforts in lots of computer vision areas, such as in object recognition [51, 15, 18, 36,
38, 165], face recognition [39, 30], shape analysis [19, 37, 12, 138, 146], medical image
analysis [28, 152, 153], invariant description [88, 96, 103], stereo matching [100, 148],
image retrieval [130, 132], motion analysis [121, 163], etc. Previous work dealing with
deformation can be roughly categorized into two classes. The first class uses specified
models to handle deformation, such as a model of an object with several parts and a sta-
tistical model of the relation between parts. These approaches are efficient for specific
tasks such as face recognition, human tracking, etc. The second class represents defor-
mation in a general way. Examples include the work of invariant descriptors, the shock
graph as a general model, etc. Detailed discussions and examples of these works can be

found in the following chapters.



In this dissertation, we will study the second class of deformations. Specifically,
we consider the problem from two points of view. On the one hand, we are interested
in building descriptions that are invariant to deformation. On the other hand, we search
for methods to compare existing descriptors in a way insensitive to deformation. In the
next section, we will describe motivations for three proposed approaches in these two

directions.

1.2 Motivations

In the following we will describe the motivation for three approaches for building robust
object descriptors. The first one is specialized to handle shape articulation. The second
one focuses on deformation invariance in images. The third one is a robust face represen-

tation for face verification across age.

1.2.1 Articulation Insensitivity and the Inner-Distance

Intuitively, the articulation of shapes can be defined gsud-wiserigid transformation,
with non-rigidity restricted tgunctions Given two points on an object, the length of
the shortest path between them, when restricted within the object boundary, is invariant
to articulation in the ideal case. This is because 1) the rigidity of parts will not change
the shortest path length and 2) the sizes of junctions are zero. We call this length the
inner-distance

In practice, junction sizes are usually not zero. However, they are very small com-

pared to the rigid parts - otherwise they become parts perceptually. This implies that the



length of the above mentioned shortest path may change a little, but it is still safe to say
that it isinsensitiveto articulation.

How should we use the inner-distance? A natural way is to use the inner-distance
to replace the Euclidean distance, which is widely used in building shape descriptors. In
Chapter 2, we will show how to extend the shape context [15] using the inner-distance

and describe experiments with the new descriptors.

1.2.2 Deformation Invariant Image Descriptor

What is an invariant for intensity images? During a general deformation, i.e., a one-to-one
continuous transformation, pixel positions can change wildly, but pixel intensities remain
constant. A simple count of existing intensities is deformation invariant. Unfortunately,
this loses too much spatial information to be truly useful. This hints to us to combine
the intensity and spatial coordinates together. A natural solution is to treat an image as
a two dimensional surface in three dimensional space, where intensity serves as the third
dimension.

Based on the above idea, we propose a novel framework to build descriptors of
local intensity that are invariant to general deformations. In this framework, an image is
embedded as a 2D surface in 3D space (this technique can be traced back to Koenderink
[74] or earlier), with intensity weighted relative to distanceaty. We show that as
this weight increases, geodesic distances on the embedded surface are less affected by
image deformations. In the limit, distances are deformation invariant. We use geodesic
sampling to get neighborhood samples for interest points, then use a geodesic-intensity

histogram (GIH) as a deformation invariant local descriptor. In addition to its invariance,



the new descriptor automatically finds its support region. This means it can safely gather
information from a large neighborhood to improve discriminability. In an experiment
of interest point matching on image pairs with both synthetic and real deformation, our

method shows promising matching results compared to several other approaches.

1.2.3 Using A Gradient Orientation Pyramid for Robust Photo Verification

Face recognition and detection has been widely studied for several decades [164]. In
comparison, face verification across ages is far less studied [123]. This is a challenging
task because human faces can vary a lot over time in many aspects, including facial texture
(e.g. from winkles), shape (e.g. from weight gain), facial hair, presence of glasses, etc. In
addition, the image acquisition conditions and environment for taking face photos often
undergoes a large change, which can cause non-uniform illumination and scale changes.
Because of this reason, a robust representation is desired for the task.

Inspired by the work on lighting insensitivity with a Lambertian assumption and
its application to face recognition [25], we propose using a gradient orientation pyramid
(GOP) as areliable face descriptor. First, by discarding magnitude information, the gradi-
ent orientation is insensitive to lighting change [25]. Second, we use the pyramid to bring
in hierarchical information. Then, given a face image pair, we use the cosines between
gradient orientations at all scales to build the “difference” between the pair. Finally, the
“difference” is combined with the support vector machine (SVM) [149] for face verifica-
tion tasks. We applied the proposed approach to passport verification tasks and tested it on
two passport image datasets with large age differences. Promising results are observed in

comparison with several other approaches, including the Bayesian+PointFive face [123],



the SVM+difference space [120], two commercial face recognition products, etc.

1.3 Outline of Part |

In the rest of the dissertation, we will describe these three approaches in detail.

Chapter 2 presents the inner-distance, including its properties and how to use it
to improve existing descriptors. In particular, we will discuss the inner-distance shape
context and its application to foliage image retrieval.

Chapter 3 focuses on the deformation invariant framework for matching intensity
images. The theoretic discussion and the Geodesic-intensity histogram is discussed in
detail, along with experiments.

Chapter 4 describes the propose robust image representation for a face verification
task. We introduce the gradient orientation pyramid and show how it is combined with
support vector machines for face verification tasks. The experimental results on two pass-

port datasets containing large age variations are demonstrated and analyzed.



Chapter 2
Shape Descriptors Using the Inner-Distance

2.1 Introduction

Part structure plays a very important role in classifying complex shapes in both human
vision and computer vision [58, 18, 73] etc. However, capturing part structure is not
a trivial task, especially considering articulations, which are nonlinear transformations
between shapes. To make things worse, sometimes shapes can have ambiguous parts (e.g.
[12]). Unlike many previous methods that deal with part structure explicitly, we propose
an implicit approach to this task.

In this chapter we introduce thener-distancedefined as the length of the shortest
path within the shape boundary, to build shape descriptors. It is easy to see that the inner-
distance is insensitive to shape articulations. For example, in Fig. 2.1, although the points
on shape (a) and (c) have similar spatial distributions, they are quite different in their part
structures. On the other hand, shapes (b) and (c) appear to be from the same category
with different articulations. The inner-distance between the two marked points is quite
different in (a) and (b), while almost the same in (b) and (c). Intuitively, this example
shows that the inner-distance is insensitive to articulation and sensitive to part structures,
a desirable property for complex shape comparison. Note that the Euclidean distance does
not have these properties in this example. This is because, defined as the length of the line

segment between landmark points, the Euclidean distance does not consider whether the
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line segment crosses shape boundaries. In this example, it is clear that the inner-distance
reflects part structure and articulation without explicitly decomposing shapes into parts.

We will study this problem in detail and give more examples in the following sections.

(a) (b) (c)

Figure 2.1: Three objects. The dashed lines denote shortest paths within the shape bound-

ary that connect landmark points.

It is natural to use the inner-distance as a replacement for other distance measures
to build new shape descriptors that are invariant/insensitive to articulation. In this chapter
we propose and experiment with two approaches. In the first approach, by replacing the
geodesic distance with the inner-distance, we extend the bending invariant signature for
3D surfaces [36] to the articulation invariant signature for 2D articulated shapes. In the
second method, the inner-distance replaces the Euclidean distance to extend the shape
context [15]. We design a dynamic programming method for silhouette matching that
is fast and accurate since it utilizes the ordering information between contour points.
Both approaches are tested on a variety of shape databases, including an articulated shape
database MPEG7 CE-Shape-1 shapes, Kimia’s silhouette [136, 134], ETH-80 [82], a
Swedish leaf database [141] and a Smithsonian leaf database [7]. The excellent perfor-

mance demonstrates the inner-distance’s ability to capture part structures (not just articu-

1This is a dataset we collected and available at http://www.cs.umd-abiling/Research/data/articu.zip
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lations).

In practice, it is often desirable to combine shape and texture information for object
recognition. For example, leaves from different species often share similar shapes but
have different vein structures (see Fig. 2.13 for examples). Using the gradient informa-
tion along the shortest path, we propose a new shape descriptor that naturally takes into
account the texture information inside a given shape. The new descriptor is applied to a
foliage image task and excellent performance is observed.

The rest of this chapter is organized as follows. Sec. 2.2 discusses related works.
Sec. 2.3 first gives the definition of the inner-distance and its computation. Then the
articulation insensitivity of the inner-distance is proved. After that we address the inner-
distance’s ability to capture part structures. Sec. 2.4 describes using the inner-distance
and MDS to build articulation insensitive signatures for 2D articulated shapes. Sec. 2.5
describes the extension of the shape context using the inner-distance, and gives a frame-
work for using dynamic programming for silhouette matching and comparison. Sec. 2.6
introduces the new shape descriptor that captures texture information. Sec. 2.7 presents
and analyzes all experiments. Sec. 2.8 concludes the paper.

Part of this work appears in [91, 89, 7].

2.2 Related Work

2.2.1 Representation and Comparison of Shapes with Parts and Articulation

For general shape matching, a recent review is given in [151]. Roughly speaking, works

handling parts can be classified into three categories. The first category (e.g. [8, 51, 39,
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131, 40, 155] etc.) builds part models from a set of sample images, and usually with some
prior knowledge such as the number of parts. After that, the models are used for retrieval
tasks such as object recognition and detection. These works usually use statistical meth-
ods to describe the articulation between parts and often require a learning process to find
the model parameters. For example, Grimson [51] proposed some early work performing
matching with precise models of articulation. Agarwal et al. [8] proposed a framework for
object detection via learning sparse, part-based representations. The method is targeted
to objects that consist of distinguishable parts with relatively fixed spatial configuration.
Felzenszwalb and Huttenlocher [39] described a general method to statistically model
objects with parts for recognition and detection. The method models appearance and ar-
ticulation separately through parameter estimation. After that, the matching algorithm is
treated as an energy minimization problem that can be solved efficiently by assuming that
the pictorial representation has a tree structure. Schneiderman and Kanade [131] used a
general definition of parts that corresponds to a transform from a subset of wavelet coeffi-
cients to a discrete set of values, then builds classifiers based on their statistics. Fergus et
al. [40] treated objects as flexible constellations of parts and probabilistically represented
objects using their shape and appearance information. These methods have been success-
fully used in areas such as face and human motion analysis etc. However, for tasks where
the learning process is prohibited, either due to the lack of training samples or due to the
complexity of the shapes, they are hard to apply.

In contrast, the other two categories (e.g. [73, 12, 134, 138, 47, 95] etc.) capture
part structures from only one image. The second category (e.g. [12, 95]) measures the

similarity between shapes via a part-to-part (or segment-to-segment) matching and junc-
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tion parameter distribution. These methods usually use only the boundary information
such as the convex portions of silhouettes and curvatures of boundary points.

The third category, which our method belongs to, captures the part structure by
considering the interior of shape boundaries. The most popular examples are the skele-
ton based approaches, particularly sheck grapkbased techniques ([73, 138, 134] etc.).
Given a shape and its boundary, shocks are defined as the singularities of a curve evolution
process that usually extracts the skeleton simultaneously. The shocks are then organized
into a shock graph, which is a directed, acyclic tree. The shock graph forms a hierar-
chical representation of the shape and naturally captures its part structure. The shape
matching problem is then reduced to a tree matching problem. Shock graphs are closely
related to shape skeletons or the medial axis [19, 73]. Therefore, they benefit from the
skeleton’s ability to describe shape, including robustness to articulation and occlusion.
However, they also suffer from the same difficulties as the skeleton, especially in dealing
with boundary noise. Another related unsupervised approach is proposed by Gorelick et
al. [47]. They used the average length of random walks of points inside a shape silhouette
to build shape descriptors. The average length is computed as a solution to the Poisson
equation. The solution can be used for shape analysis tasks such as skeleton and part
extraction, local orientation detection, shape classification, etc.

The inner-distance is closely related to the skeleton based approaches in that it also
considers the interior of the shape. Given two landmark points, the inner-distance can be
“approximated” by first finding their closest points on the shape skeleton, then measuring
the distance along the skeleton. In fact, the inner-distance can also be computed via
the evolution equations starting from boundary points. The main difference between the
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inner-distance and the skeleton based approaches is that the inner-distance discards the
structure of the path once their lengths are computed. By doing this, the inner-distance
is more robust to disturbances along boundaries and becomes very flexible for building
shape descriptors. For example, it can be easily used to extend existing descriptors by
replacing Euclidean distances. In addition, the inner-distance based descriptors can be
used for landmark point matching. This is very important for some applications such as
motion analysis. The disadvantage is the loss of the ability to perform part analysis. It is
an interesting future work to see how to combine the inner-distance and skeleton based

techniques.

2.2.2 Geodesic Distances for 3D Surfaces

The inner-distance is very similar to the geodesic distance on surfaces. The geodesic
distances between any pair of points on a surface is defined as the length of the shortest
path on the surface between them. One of our motivations comes from Elad and Kimmel's
work [36] using geodesic distances for 3D surface comparison through multidimensional
scaling (MDS). Given a surface and sample points on it, the surface is distorted using
MDS, so that the Euclidean distances between the stretched sample points are as similar
as possible to their corresponding geodesic distances on the original surface. Since the
geodesic distance is invariant to bending, the stretched surface forms a bending invariant
signature of the original surface.
Bending invariance is quite similar to the 2D articulation invariance in which we

are interested. However, the direct counterpart of the geodesic distance in 2D does not

work for our purpose. Strictly speaking, the geodesic distance between two points on
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the “surface” of a 2D shape is the distance between them along the contour. If a simple
(i.e. non self-intersecting), closed contour has lengththen for any pointp, and any

d < M/2, there will be exactly two pointg,, ¢» that are a distancé away fromp, along

the contour (see Fig. 2.2 for examples). Hence, a histogram of the geodesic distance to all
points on the contour degenerates into something trivial, which does not capture shape.
Unlike the geodesic distance, the inner-distance measures the length of the shortest path
within the shape boundary instead of along the shape contour (surface). We will show

that the inner distance is very informative and insensitive to articulation.

Figure 2.2: Geodesic distances on 2D shapes. Using the geodesic distances along the

contours, the two shapes are indistinguishable.

There are other works using geodesic distances in shape descriptions. For exam-
ple, Hamza and Krim [54] applied geodesic distance usimgpe distributiong[114])
for 3D shape classification. Zhao and Davis [163] used the color information along the
shortest path within a human silhouette. The articulation invariance of shortest paths is
also utilized by them, but in the context of background subtraction. Ling and Jacobs
[90] proposed using the geodesic distance to achieve deformation invariance in intensity

images.
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2.2.3 Shape Contexts for 2D Shapes

Theshape contexwvas introduced by Belongie et al. [15]. It describes the relative spatial
distribution (distance and orientation) of landmark points around feature points. Given
n sample pointsey, zs, ..., ,, On a shape, the shape context at paints defined as a

histogramh; of the relative coordinates of the remaining- 1 points

hi(k) = #{x; : j #i,x; — x; € bin(k)} (2.1)

where the bins uniformly divide the log-polar space. The distance between two shape
context histograms is defined using titestatistic.

For shape comparison, Belongie et al. used a framework combining shape context
and thin-plate-splines [20] (SC+TPS). Given the points on two shdpasd B, first the
point correspondences are found through a weighted bipartite matching. Then, TPS is
used iteratively to estimate the transformation between them. After that, the similarity

betweenA and B is measured as a weighted combination of three parts

D =aD,.+ Dy, + bDy, (2.2)

where D,. measures the appearance differentg. measures the bending energy. The
D,. term, named thshape context distanceneasures the average distance between a
point on A and its most similar counterpart @ (in the sense of (2.10)}, b are weights
(a =1.6,b=0.31in[15]).

The shape context uses the Euclidean distance to measure the spatial relation be-
tween landmark points. This causes less discriminability for complex shapes with articu-

lations (e.g., Fig. 2.8 and 2.9). The inner-distance is a natural way to solve this problem
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since it captures the shape structure better than the Euclidean distance. We use the inner-
distance to extend the shape context for shape matching. The advantages of the new
descriptor are strongly supported by experiments.

Belongie et al. showed that the SC+TPS is very effective for shape matching tasks.
Due to its simplicity and discriminability, the shape context has become quite popular
recently. Some examples can be found in [110, 145, 147, 162, 111, 82]. Among these
works, [145] is most related to our approach. Thayananthan et al. [145] suggested includ-
ing a figural continuity constraint for shape context matching via an efficient dynamic
programming scheme. In our approach, we also include a similar constraint by assuming
that contour points are ordered and use dynamic programming for matching the shape
context at contour sample points. Notice that usually dynamic programming encounters
problems with shapes with multiple boundaries (e.g., scissors with holes). The inner-
distance has no such problem since it only requires landmark points on the outermost
silhouette, and the shortest path can be computed taking account of holes. This will be

discussed in the following sections.

2.3 The Inner-Distance

In this section, we will first give the definition of the inner-distance and discuss how to
compute it. Then, the inner-distance’s insensitivity to part articulations is proven. After

that, we will discuss its ability to capture part structures.

18



2.3.1 The Inner-Distance and Its Computation

First, we define a shap@ as a connected and closed subséktf Given a shapé® and
two pointsz, y € O, the inner-distance betweeny, denoted ad(z, y; O), is defined as
the length of the shortest path connectingndy within O. One example is shown in
Fig. 2.3.

Note: 1) There may exist multiple shortest paths between given points. However,
for most cases, the path is unique. In rare cases where there are multiple shortest paths,
we arbitrarily choose one. 2) We are interested in shapes defined by their boundaries,
hence only boundary points are used as landmark points. In addition, we approximate a
shape with a polygon formed by their landmark points.

X

Figure 2.3: Definition of the inner-distance. The dashed polyline shows the shortest path

between point andy.

A natural way to compute the inner-distance is using shortest path algorithms. It

consists of two steps:

1. Build a graph with the sample points. First, each sample point is treated as a node
in the graph. Then, for each pair of sample pointsaind p., if the line segment

connectingp; andp, falls entirely within the object, an edge betwegrandp is
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added to the graph with its weight equal to the Euclidean distdpce- p»||. An
example is shown in Fig. 2.4. Note 1) Neighboring boundary points are always
connected; 2) The inner-distance reflects the existence of holes without using sam-
ple points from hole boundarigswhich allows dynamic programming algorithms

to be applied to shapes with holes.

2. Apply a shortest path algorithm to the graph. Many standard algorithms [31] can
be applied here, among them Johnson or Floyd-Warshall’s algorithms(hane

complexity ¢ is the number of sample points).

Figure 2.4: Computation of the inner-distance. Left, the shape with the sampled silhouette
landmark points. Middle, the graph built using the landmark points. Right, a detail of the

right top of the graph. Note how the inner-distance captures the holes.

In this chapter we are interested in the inner-distance between all pairs of points.
Now we will show that this can be computed with{(n?) time complexity forn sample

points. First, it takes timé&(n) to check whether a line segment between two points

2The points along hole boundaries may still be needed for computing the inner-distance, but not for

building descriptors.
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is inside the given shape (by checking the intersections betweep;lineand all other
boundary line segments, with several extra tests). As a result, the complexity of graph
construction is of)(n?). After the graph is ready, the all-pair shortest path algorithm has
complexity ofO(n?). Therefore, the whole computation take:?).

Note that wherO is convex, the inner-distance reduces to the Euclidean distance.
However, this is not always true for non-convex shapes (e.g., Fig. 2.1). This suggests that
the inner-distance is influenced by part structure to which the concavity of contours is

closely related [58, 37]. In the following subsections, we discuss this in detail.

2.3.2 Articulation Insensitivity of the Inner-Distance

As shown in Fig. 2.1, the inner-distance is insensitive to articulation. Intuitively, this

is true because an articulated shape can be decomposed into rigid parts connected by
junctions. Accordingly, the shortest path between landmark points can be divided into
segments within each parts. We will first give a very general model for part articulation

and then formally prove articulation insensitivity of the inner-distance.

A Model of Articulated Objects

Before discussing the articulation insensitivity of the inner-distance, we need to provide
a model of articulated objects. Note that our method does not involve any part models,
the model here is only for the analysis of the properties of the inner-distance. Intuitively,

when a shap® is said to have articulated parts, it means

e O can be decomposed into sevaralts say,0,, O,, ..., O,,, wheren is the number
of parts. These parts are connectedunctions
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e The junctions between parts are very small compared to the parts they connect.

e The articulation ofO as a transformation is rigid when limited to any p@xt but

can be non-rigid on the junctions.

e The new shap®’ achieved from articulation ad is again an articulated object and

can articulatéackto O.

Based on these intuition, we define an articulated olgject R? of n parts together
with an articulationf as:
o={Jo} U7}
i=1 i#j

where
e Vi, 1<i<n, partO;CR?is connected and closed, a@g O, = O, Vi#j, 1<i, j<n.

o Vi#£j, 1<i,j<n, J;;CR? connected and closed, is the junction betw@&eandO,; .

If there is no junction betweef»; andO;, thenJ;; = . Otherwise,J;;(0,;#0,

Ji;(10; 70.

o diam(J;;)<e, wherediam(P)=maz, ,ep{d(x,y; P)} is thediameterof a point set
PCR? in the sense of the inner-distanee:0 is constant and very small compared
to the size of the articulated parts. A special case+s 0, which means that all

junctions degenerate to single points &@nds called andeal articulated object

Fig. 2.5 (a) shows an example articulated shape with three parts and two junctions.
The articulation from an articulated objeCtto another articulated objec?’ is a
one-to-one continuous mappirfgsuch that:
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(a) (b) (c)
Figure 2.5: Examples of articulated objects. (a) An articulated shape with three parts,
01JO2JOs|JJ12UJ23. (b) Overlapping junctions (the five dark areas). (c) Ideal articu-
lation.
e O'hasthe decompositiad’ = {{J;_, O;} U{U,; Ji;}- FurthermoreQ; = f(0;),
Vi, 1<i<n are parts oD’ and J; = f(Jy;), Vi#j, 1<i, j<n are junctions in0’.
This preserves the topology between the articulated parts. In particular, the de-

formed junctions still have a diameter less than or equal to

e fis rigid (rotation and translation only) when restrictedg Vi, 1<:<n. This

means inner-distances within each part will not change.

Notes: 1) In the above and following, we use the notaffof) = {f(z) : x € P} for
short. 2) It is obvious from the above definitions tifat is an articulation that maps’
to O.

The above model of articulation is very general and flexible. For example, there is
no restriction on the shape of the junctions. Junctions are even allowed to overlap each
other. Furthermore, the articulatiginon the junctions are not required to be smooth. Fig.

2.5 (b) and (c) gives two more examples of articulated shapes.
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Articulation Insensitivity

We are interested in how the inner-distance varies under articulation. From previous
paragraphs we know that changes of the inner-distance are due to junction deformations.
Intuitively, this means the change is very small compared to the size of parts. Since most
pairs of points have inner-distances comparable to the sizes of parts, the relative change
of the inner-distances during articulation are small. This roughly explains why the inner-
distances are articulation insensitive.

We will use following notations: 1)'(x1, zo; P) denotes a shortest path frame P
to z,€P for a closed and connected point §&CR? (s0 d(x1, z2; P) is the length of
['(x1, z9; P)). 2) indicates the image of a point or a point set unfle.g.,P’'=f(P) for
point setP, p’=f(p) for a pointp. 3) “[" and “]” denote the concatenation of paths.

Let us first point out two facts about the inner-distance within a part or crossing a

junction. Both facts are direct results from the definitions in sec. 7.3.1.
d(z,y;0;) = d(2',y;0;)  Va,yc0;, 1<i<n (2.3)
|d(z,y;0) —d(2,y s O)| < e Va,y € Jyy Vi), 1<i, j<n, J; # O (2.4)

Note that (2.4) does not require the shortest path betwegno lie within the junction

Jij. These two facts describe the change of the inner-distances of restricted point pairs.
For the general case of ycO, we have the following theorem:

Theorem: Let O be an articulated object arnfdbe an articulation of) as defined above.
Va,y€O, suppose the shortest pdtlz, y; O) goes throughn different junctions inO

andI'(z/,y'; O") goes throughn' different junctions in0’, then

|d(2,y;0) — d(z’,y'; O)| < maz{m,m'}e (2.5)
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Proof: The proof uses the intuition mentioned above. First we decomipase; O) into
segments. Each segment is either within a part or across a junction. Then, applying (2.3)
and (2.4) to each segment leads to the theorem.

First,I'(z, y; O) is decomposed intbsegments:

F(xa% O) = [F(po,pn Rl)vr(plap2§ R2)7 ey F<pl—17pl§ Rl)]

using point sequeng®, p1, ..., p; and regionszy, ..., R, via the steps using Algorithm 1.
An example of this decomposition is shown in Fig. 2.6 (a). With this decomposition,

d(x,y; O) can be written as:

d(l'ay; O) = Z d<pi—1api§ Ri)

1<i<i
Supposen; of the segments cross junctions (i.e., segments not contained in any single
part), then obviouslyn, <m.
In O', we construct a path fromf to ¢’ corresponding td'(z, y; O) as follows (e.g.

Fig. 2.6 (b)):

C(2',y 0") = [['(po, pis BY), T (PL, po; Ry), o, Ty, 03 1))
Note that@(x’,y’; O’) is not necessarily the shortest pathQh Denotecf(x’,y’; 0’) as

the length ofC~(x’, y'; O"), it has the following property due to (2.3), (2.4):

|d(z,y;0) —d(2',y';O")| < mye < me (2.6)

On the other hand, sing@ can be articulated fron’ through f !, we can con-
structC(z, y; O) from I'(«/,/; O') in the same way we constructédz’, y/; O') from

[(z,y; O). Then, similar to (2.6), there is

|d(2’,y;0") — d(z,y; 0)| < m'e (2.7)
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Algorithm 1 Decomposé’(z, y; O)
Ppo—x, 10

while p;#y do {/*find p;1*/}
11—+ 1
R; < the region (a part or a junctioh) z, y; O) enters aftep; _,
if R; = Oy for somek (R; is a part)then {/*enter a part*}
Setp; as a point inD; such that
1) T'(pi-1,pi; Ox) C I'(z,y;0)
2) I'(x, y; O) enters a new region (a part or a junction) afieor p; = y
else{/* R, = J,, for somer, s (R; is a junction), enter a junction}/
Setp; as the point in/,;(\['(z, y; O) such thaf’(z, y; O) never re-enterd,.; after
Di-
R; < the union of all the parts and junctioh$p;_1, p;; O) passes through (note
JrsCR;).
end if
end while

{1
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Combining (2.6) and (2.7),

d(z,y;0) —m'e<d(z,y; 0) — m'e<d(z,y'; O")<d(2', y'; O) <d(x,y; O) + me

This implies (2.5) 1

J12

Figure 2.6: (a) Decomposition of(x, y; O) (the dashed line) witlk = py, p1, P2, p3 = y.
Note that a segment can go through a junction more than oncep(@«. (b) Construc-
tion of C(#',5/;0’) in O’ (the dashed line). Note that(z’,y/; O') is not the shortest

path.

From (2.5) we can make two remarks concerning changes of inner-distances under

articulation:

1. The inner-distance is strictly invariant for ideal articulated objects. This is obvious

sincee = ( for ideal articulations.

2. Sincee is very small, for most pairs af, y, the relative change of inner-distance is

very small. This means the inner-distance is insensitive to articulations.

We further clarify several issues. First, the proof depends on the size limitation of
junctions. The intuition is that a junction should have a relatively smaller size compared
to parts, otherwise it is more like a part itself. A more precise part-junction definition may
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provide a tighter upper bound but sacrifice some generality. The definition also captures
our intuition about what distinguishes articulation from deformation. Second, the part-

junction model is not actually used at all when applying the inner-distance. In fact, one

advantage of using the inner-distance is thatplicitly captures part structure, whose

definition is still not clear in general.

2.3.3 Inner-Distances and Part Structures

In addition to articulation insensitivity, we believe that the inner-distance captures part
structures better than the Euclidean distance. This is hard to prove because the definition
of part structure remains unclear. For example, Basri et al. [12] gave a shape of shoe (Fig.
2.7) which has no clear part decomposition, although it feels like it has more than one

part.

Figure 2.7: A shape from [12], which has no clear part decomposition.

Instead of giving a rigorous proof, we show how the inner-distance captures part
structure with examples and experiments. Figures 2.1, 2.8 and 2.12 show examples where
the inner-distance distinguishes shapes with parts while the Euclidean distance runs into
trouble because the sample points on the shape have the same spatial distributions. For
example, the original shape context [15] may fail on these shapes. One may argue that

the Euclidean distance will also work on these examples with an increased number of
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landmark points. This argument has several practical problems. First, the computational
cost will be increased, usually in a quadratic order or higher. Second, no matter how many
points are used, there can always be finer structures. Third, as shown in Fig. 2.9, for some

shapes this strategy will not work.

[ ] .

=

Figure 2.8: With the same sample points, the distributions of Euclidean distances between
all pair of points are indistinguishable for the four shapes, while the distributions of the

inner-distances are quite different.

During retrieval experiments using several shape databases, the inner-distance based
descriptors all achieve excellent performance. Through observation we have found that
some databases (e.g., MPEG?7) are difficult for retrieval mainly due to the complex part
structures in their shapes, though they have little articulation. These experiments show
that the inner-distance is effective at capturing part structures (see Sec. 2.7.2 and Figures
2.12 and 2.18 for details).

Aside from part structures, examples in Fig. 2.9 show cases where the inner-distance
can better capture some shapes without parts. We expect further studies on the relation-

ship between inner-distances and shape in the future.
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Figure 2.9: With about the same number of sample points, the four shapes are virtually
indistinguishable using distribution of Euclidean distances, as in Fig. 2.8. However, their
distributions of the inner-distances are quite different except for the first two shapes. Note:
1) None of the shapes has (explicit) parts. 2) More sample points will not affect the above

statement.

2.4 Articulation Invariant Signatures

To build shape descriptors with the inner-distance is straightforward. Theoretically it can
be used to replace other distance measures (e.g. the Euclidean distance) in any existing
shape descriptors. In this section, the inner-distance is used to build articulation invariant
signatures for 2D shapes using multidimensional scaling (MDS) similar to [36]. In the
next section, we will show how to use the inner-distance to extend the shape context for
shape matching.

Given sample point$ = {p;};., on a shap&® and the inner-distancesl;; }7',_,
between them, MDS finds the transformed poi@ts= {¢;}_, such that the Euclidean

distancege;;(Q) = [|¢; — g1 }7';=1 minimize thestressS(Q) defined as:

D i Wi(diy — €i3(Q))?

5(Q) = S &2

(2.8)

wherew;; are weights. In our experiment, we use the least squares MDSuwitk=

1. The stress can be minimized using the SAMCOF (Scaling by Maximizing a Convex
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Function) algorithm [21]. SAMCOF is an iterative algorithm that keeps decreasing the
objective function, i.e., the stress (2.8). The details can be find in Elad and Kimmel's
paper [36].

Fig. 2.10 shows two examples of the articulation invariant signatures computed by
the above approach. It can be seen that although the global shape of the two original
objects are quite different due to the articulation, their signatures are very similar to each

other. More examples of the articulation invariant signatures can be seen in Fig. 6.8.

Figure 2.10: Articulation invariant signatures. Left: two shapes related by articulation.

Right: their signatures.

It is attractive to use the articulation invariant signature for classifying articulated
shapes. In our experiments we combine it with the shape context. The method contains
three steps: 1) use the inner-distance and MDS to get the articulation invariant signatures;
2) build the shape context on the signatures; 3) use dynamic programming for shape
context matching. The third step is described in detail in the next section. We call this ap-
proach MDS+SC+DP. The experimental results show significant improvement compared
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to the shape context on the original shapes.

2.5 Inner-Distance Shape Context: Matching and Retrieval

2.5.1 Inner-Distance Shape Context (IDSC)

To extend the shape context defined in (2.1), we redefine the bins with the inner-distance.
The Euclidean distance is directly replaced by the inner-distance. The relative orientation
between two points can be defined as the tangential direction at the starting point of the
shortest path connecting them. However, this tangential direisensitive to articula-

tion. Fortunately, for a boundary poiptand its shortest pathi(p, ¢; O) to another point

q, the angle between the contour tangent and the direction of (p, ¢; O) atp is insen-

sitive to articulation (invariant to ideal articulation). We call this angleitireer-angle

(e.g., see Fig. 2.11) and denote i/4s, ¢; O). The inner-angle is used for the orientation
bins. This is similar to using the local coordinate system suggested in [15] to get rotation
invariance. In practice, the shape boundary may be distorted by noise that reduces the
stability of the inner-angle. To deal with this problem, we smooth the contour using a
small neighborhood before computing the inner-angle.

Fig. 2.12 shows examples of the shape context computed by the two different meth-
ods. It is clear that SC is similar for all three shapes, while IDSC is only similar for the
beetles. From this figure we can see that the inner-distance is better at capturing parts
than SC.

The inner-angle is just a byproduct of the shortest path algorithms and does not

affect the complexity. Once the inner-distances and orientations between all pair of points
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Figure 2.11: The inner-angip, ¢; O) between two boundary points.

SCatp
IDSC atp
SCat g

IDSC at ¢

Hﬂﬂl@

Figure 2.12: Shape context (SC) and inner-distance shape context (IDSC). The top row
shows three objects from the MPEG7 shape database (Sec. 2.7.2), with two marked points
p, g on each shape. The next rows show (from top to bottom), the $Cthe IDSC at

p, the SC afy, the IDSC aty. Both the SC and the IDSC use local relative frames (i.e.
aligned to the tangent). In the histograms, the x axis denotes the orientation bins and the

y axis denotes log distance bins.

are ready, it take®(n?) time to compute the histogram (2.1).

2.5.2 Shape Matching Through Dynamic Programming

The contour matching problem is formulated as follows: Given two shapesd B,

describe them by point sequences on their contourpsay...p, for A with n points, and



q1G2---qm fOr B with m points. Without loss of generality, assume> m. The matching
7 from A to B is a mapping fron, 2, ...,nt00, 1,2, ..., m, wherep, is matched tq; if
7(i) # 0 and otherwise left unmatched.should minimize the match co&f(w) defined

as

Cm) =D, _.clim(i) (2.9)

wherec(i,0) = 7 is the penalty for leaving, unmatched, and for < j < m, c(i, ) is

the cost of matching; to ¢;. This is measured using thé statistic as in [15]

N [a,i(k) — b, (k)]?
C<Z’]):§Zlgk§< hai(k) + hp,;(k) (2.10)

Hereh,, andhp ; are the shape context histogramspptindg; respectively, ands is
the number of histogram bins.

Since the contours provide orderings for the point sequenges.p,, andq,qs...q,,
it is natural to restrict the matchingwith this order. To this end, we use dynamic pro-
gramming (DP) to solve the matching problem. DP is widely used for contour matching.
Detailed examples can be found in [145, 12, 118]. We use the standard DP method [31]
with the cost functions defined as (2.9) and (2.10).

By default, the above method assumes the two contours are already aligned at their
start and end points. Without this assumption, one simple solution is to try different
alignments at all points on the first contour and choose the best one. The problem with
this solution is that it raises the matching complexity frorm?) to O(n?). Fortunately,
for the comparison problem, it is often sufficient to try aligning a fixed number of points,
say, k points. Usuallyk is much smaller tham: andn, this is because shapes can be
first rotated according to their moments. According to our experience;, far = 100,
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k = 4 or 8 is good enough and largérdoes not demonstrate significant improvement.
Therefore, the complexity is stitD(kn?) = O(n?).

Bipartite graph matching is used in [15] to find the point correspondencsi-
partite matching is more general since it minimizes the matching cost (2.9) without ad-
ditional constraints. For example, it works when there is no ordering constraint on the
sample points (while DP is not applicable). For sequenced points along silhouettes, how-
ever, DP is more efficient and accurate since it uses the ordering information provided by

shape contours.

2.5.3 Shape Distances

Once the matching is found, we use the matching ¢gst) as in (2.9) to measure the
similarity between shapes. One thing to mention is that dynamic programming is also
suitable for shape context. In the following, we use IDSC+DP to denote the method of
using dynamic programming matching with the IDSC, and use SC+DP for the similar
method with the SC.

In addition to the excellent performance demonstrated in the experiments, the IDSC+DP
framework is simpler than the SC+TPS framework (2.2) [15]. First, besides the size of
shape context bins, IDSC+DP has only two parameters to tune: 1) The perfaltya
point with no matching, usually set to 0.3, and 2) The number of start pbiftisdiffer-
ent alignments during the DP matching, usually set to 4 or 8. Second, IDSC+DP is easy
to implement, since it does not require the appearance and transformation model as well
as the iteration and outlier control. Furthermore, the DP matching is faster than bipartite

matching, which is important for retrieval in large shape databases.
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The time complexity of the IDSC+DP consists of three parts. First, the computation
of inner-distances can be achieved(n?®) with Johnson or Floyd-Warshall's shortest
path algorithms, where is the number of sample points. Second, the construction of
the IDSC histogram take8(n?). Third, the DP matching cost3(n?), and only this part
is required for all pairs of shapes, which is very important for retrieval tasks with large
image databases. In our experiment using partly optimized Matlab code on a regular
Pentium IV 2.8G PC, a single comparison of two shapes with 100 takes about 0.31

second.

2.6 Shortest Path Texture Context

In real applications, the shape information is often not enough for object recognition
tasks. On the one hand, shapes from different classes sometimes are more similar than
those from the same class (e.g., Fig. 2.13). On the other hand, shapes are often damaged
due to occlusion and self-overlapping (some examples can be found in Fig. 2.24). Natu-
rally, the combination of texture and shape information is desirable for this problem. In
[15] the appearance information is included into the SC+TPS framework by considering
appearance around landmark points. In this section, we will introduce a new descriptor
that considers the texture information inside the whole shape.

In previous sections, the inner-distance is shown to be articulation insensitive due to
the fact that the shortest paths within shape boundaries are robust to articulation. There-
fore, the texture information along these paths provides a natural articulation insensitive

texture description. Note that this is true only when the paths are robust. In this sec-
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Figure 2.13: Shapes of three leaves ((a), (b) and (c)) are not enough to distinguish them.

Their texture ((d), (e) and (f) respectively) apparently helps.

tion, we use local intensity gradient orientations to capture texture information because
of their robustness and efficiency. To gain articulation invariance, the angles between
intensity gradient directions and shortest path directions are used. In the following we
call these angleselative orientations Given shape& and two point, v on it, we use
a(p,v; O) to denote the relative orientation with respect to the shortestIpath; O).

An example is shown in Fig. 2.14.

Based on the above idea, we proposeshertest path texture contef@PTC) as a
combined shape and texture descriptor. SPTC is an extension of the IDSC in that it mea-
sures the distributions of (weighted) relative orientations along shortest paths instead of
the joint distributions of inner-distance and inner-angle distributions of landmark points.
In our application, the relative orientations are weighted by gradient magnitudes when
building into SPTC. For texture undergoing large non-uniform illumination change, it

might be better to use non-weighted relative orientations.
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Figure 2.14: Relative orientation(p, v; O) at pointv. The arrow points to local intensity

gradient direction.

Givenn landmark pointsey, zo, ..., z,, Sampled from the boundary of shapethe
SPTC for each; is a three-dimensional histograim (we abuse notation to uge again
for the histograms). Similarly to IDSC, SPTC uses the inner-distance and the inner-
angle as the first two dimensions. The third dimension of SPTC is the (weighted) relative
orientation that takes into account the texture information along shortest paths. To build
h;, for eachz;, 7 # i, a normalized histogram of relative orientation along the shortest
pathI'(z;, z;; O) is added into the relative orientation bin located at the inner-distance
and inner-angle bin determined by. The algorithm is described in Algorithm 2. Note
that when the number of relative orientation bins= 1, SPTC reduces to IDSC.

A similar idea of using “relative orientation” is used by Lazebnik et al. [80] for
rotation invariant texture description. Shape context had also been extended for texture
description by including intensity gradient orientation (e.g. [104]). SPTC is different

from these methods in three ways. First, SPTC combines texture information and global
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Algorithm 2 Shortest path texture contetat landmark point;
h; < 3-D matrix with zero entries everywhere

for j=1ton,j #ido
I'(z;,2;; O) < shortest path from; to z;
h — 1-D weighted histogram of the relative orientations aldig;, z;;0)
h—h/| k|, {/*Normalizeh, where| .|| is theL, norm */}
d;q < the inner-distance bin index computed frai;, z;; O)
0,4 < the inner-angle bin index computed frdtt;, z;; O)
for a;; = 1ton, do{/* n,is the number of relative orientation bing*/
hi(dig, Oias iq) — hi(dia, Oia, cvia) + hcvq)
end for

end for

hi; < h;/|h;|  {/* Normalize h; */ }

shape information while the above methods work for local image patches. Second, the
above methods sample the orientations at a large number of pixels inside a patch, which
is too expensive for our task without utilizing shortest paths. Third, none of the previous
methods is articulation invariant. Another related work by Zhao and Davis [163] used
the color information along the shortest path for background subtraction. Instead of color
information, we use gradient orientation, which is more robust to lighting change [25],
which is very important for classification tasks. In the next section, SPTC is tested in two

leaf image databases and excellent performance is observed.

39



2.7 Experiments

This section describes the experiments testing proposed approaches. First, we test the
inner-distance’s articulation insensitivity with an articulated shape dataset. After that, the
inner-distance is tested in comparison with other state-of-the-art approaches on several
widely tested shape data sets, including the MPEG7 CE-Shape-1 shapes, Kimia’s silhou-
ette [136, 134], ETH-80 [82]. Then, the proposed approach is tested on two foliage image
datasets, a Swedish leaf dataset [141] and a Smithsonian leaf dataset. These experiments
show how the inner-distance works in real applications and how the SPTC performs on
shapes with texture. Finally, we will show the potential use of the IDSC on human motion
analysis.

Now we describe the parameters used in the experiments. We tosdenote the
number of landmark points (on the outer contour of shapes). Landmark points are sam-
pled uniformly (same as in [15]) to avoid biasis chosen according to tasks. In general,
largern will produce greater accuracy with less efficiency. For the size of histograms,
ng, ng, andn,. are used for the number of inner-distance bins, the number of inner-angle
bins, and the number of relative orientation bins respectively. A typical setting for the bin
number isng = 5,ny = 12 andn,. = 8. In our experiments, we sometimes uge= 8 to
get a better results. For dynamic programmihgienotes the number of different start-
ing points for alignment (uniformly chosen from landmark points). The choidews
discussed in Sec. 2.5.3. In general, a lafgercreases the accuracy. However in practice
we found thatt = 4 — 8 usually gives satisfiable results. For example; 8 is used for

the MPEG7 dataset. However, we did notice that lafgean improve the performance
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Table 2.1: Retrieval result on the articulate dataset.
Distance Type| Top 1| Top 2| Top 3| Top 4

L, (baseline) | 25/40| 15/40| 12/40| 10/40

SC+DP 20/40| 10/40| 11/40| 5/40
MDS+SC+DP | 36/40| 26/40| 17/40 | 15/40
IDSC+DP 40/40| 34/40| 35/40| 27/40

further, e.g.k = 16 is used for the ETH-80 dataset that involves wildly varied rotations.
We did not rotate shapes according to their moments, which might be helpful for tasks
involving a large variation in orientations. The penaityor one occlusion is always set

to be 0.3 (our experiments show that differen the range 0f0.25, 0.5] do not affect

the results too much). In all the experiments, the parameters for MDS+SC+DP are the
same as in IDSC+DP. Furthermore, for datasets that have no previously reported shape
context matching results, we run the SC+DP for comparison with the same parameters as

IDSC+DP.

2.7.1 Articulated Database

To show the articulation insensitivity of the inner-distance, we apply the proposed artic-
ulation invariant signature and the IDSC+DP approach to an articulated shape data set
we collected. The dataset contains 40 images from 8 different objects. Each object has
5 images articulated to different degrees (see Fig. 6.8). The dataset is very challenging
because of the similarity between different objects (especially the scissors). The holes of
the scissors make the problem even more difficult.
The parameters in the experiment are= 200, ny = 5, ny = 12. Since all the

objects are at the same orientation, we align the contours by forcing them to start from

the bottom-left points and then set= 1 for DP matching. The articulation invariant
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Figure 2.15: Left: Articulated shape database. This dataset contains 40 images from 8
objects with articulation. Each column contains five images from the same object. Right:

MDS of the articulated shape database using the inner-distances.

signatures of the shapes are computed and shown in Fig. 6.8.

To evaluate the recognition result, for each image, the four most similar matches are
chosen from other images in the dataset. The retrieval result is summarized as the number
of 1st, 2nd, 3rd and 4th most similar matches that come from the correct object. Table 2.1
shows the retrieval results. It demonstrates that both the articulation invariant signature
and the IDSC help to improve recognition a lot. This verifies our claim that the inner-
distance is very effective for objects with articulated parts. Fig. 2.16 shows some detailed
retrieval results for some of the images. The experiment also shows that IDSC works
better than MDS for the articulated shapes. One reason is that the MDS may cause loss
of information since it uses the Euclidean distancegproximatehe inner-distance. To
give an intuition of the difficulty of the database, a baseline algorithm usjngjstance

was also tested.
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Figure 2.16: Left: SC+DP on the articulated shape database. The top 4 retrieval results of
20 images are shown here. The top row shows the querying images. Row two to row five
show the top one to top four retrieval results respectively. The numbers below the results
are the matching scores. Incorrect hits are circled in dotted lines. Right: IDSC+DP on the

articulated shape database, same notations as for SC+DP.

2.7.2 MPEGY7 Shape Database

The widely tested MPEG7 CE-Shape-1 [79] database consists of 1400 silhouette images
from 70 classes. Each class has 20 different shapes (see Fig. 2.17 for some typical im-
ages). The recognition rate is measured by the so-called Bullseye test: For every image
in the database, it is matched with all other images and the top 40 most similar candidates
are counted. At most 20 of the 40 candidates are correct hits. The score of the test is the
ratio of the number of correct hits of all images to the highest possible number of hits
(which is 20x1400).
The parameters in our experiment are= 100 (300 were used in [15])z, = 8,
ng = 12 andk = 8. To handle mirrored shapes, we compare two point sequences (cor-

responding to shapes) with the original order and reversed order. Table 2.2 lists reported
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Figure 2.17: Typical shape images from the MPEG7 CE-Shape-1, two images from each

class.

results from different algorithms. It shows that our algorithms outperform all the alterna-
tives. The speed of our algorithm is in the same range as those of shape contexts [15],
curve edit distance [133] and generative model [147]. Again, we observed that IDSC
performs a little better than the articulation invariant signatures.

Note that unlike the original SC+TPS framework used in [15], the appearance and
bending information are not included in our experiment. The reason is twofold: 1) we
want to focus more on the inner-distance itself; 2) this also makes our framework easy
to use. In addition, the dynamic programming scheme is used to take advantage of the
ordering information of the landmark points and the local coordinate framework (along
the tangential of landmark points) are used to achieve rotation invariance.

To help understand this performance, we did two other experiments in the same
setting where the only difference is the descriptors used: one uses SC, another IDSC.

The parameters in both experiments are: 64 sample points on each silhouette, 8 distance
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Table 2.2: Retrieval rate (bullseye) of different methods for the MPEG7 CE-Shape-1.

Alg. | CSS [109]| Visual Parts [79] SC+TPS [15]| Curve Edit [133] Dis. Set [50]
Score 75.44% 76.45% 76.51% 78.17% 78.38%
Alg. | MCSS [64] Gen. Model [147)MDS+SC+DP| IDSC+DP

Score 78.8% 80.03% 84.35% 85.40%"

* A higher score of 86.56 is achieved using EMD-instead ofy? distance [92].
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Figure 2.18: Two retrieval examples for comparing SC and IDSC on the MPEG7 data set.

The left column show two shapes to be retrieved: a beetle and an octopus. The four right
rows show the top 1 to 9 matches, from top to bottom: SC and IDSC for the beetle, SC

and IDSC for the octopus.

bins and 8 orientation bins. To avoid the matching effect, shapes are compared using the
simple shape context distance measlitg instead of DP (see Sec. 2.2.3 or [15]). The
Bullseye score with SC is 64.59%, while IDSC gets a higher score of 68.83%. Fig. 2.18
shows some retrieval results, where we see that the IDSC is good for objects with parts
while the SC favors global similarities. Examination of the MPEG7 data set shows that
the complexity of shapes are mainly due to the part structures but not articulations, so the
good performance of IDSC shows that the inner-distance is more effective at capturing

part structures.
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2.7.3 Kimia's database

IDSC+DP and MDS+SC+DP are tested on two shape databases provided by Kimia’s
group [136, 134]. The first database [136] contains 25 images from 6 categories (Fig.
2.19 (a)). It has been tested by [15, 136, 45]. We use parametersl00, ng = 5,
ng = 12 andk = 4. The retrieval result is summarized as the number of 1st, 2nd and
3rd closest matches that fall into the correct category. The results are listed in Table
2.3. It shows that IDSC slightly outperforms the other three reported methods and the
MDS-based approach.

The second database [134] contains 99 images from 9 categories (Fig. 2.19 (b)) and
has been tested by [134, 147]. We use parametefs300, ny, = 8, ny = 12 andk = 4.
Similar to results described above, the retrieval result is summarized as the number of
top 1 to top 10 closest matches (the best possible result for each of them is 99). Table 2.4
lists the numbers of correct matches of several methods, which shows that our approaches
performs comparably to the best approaches. One interesting observation is that the IDSC
performs very similarly to the shock edit. This suggests a close relation between them as

mentioned in the related work section.

Table 2.3: Retrieval result on Kimia dataset 1 [136] (Fig. 2.19 (a)).
Method Topl| Top2| Top 3

Sharvit et. al [136] 23/25| 21/25| 20/25
Gdalyahu and Weinshall [45]25/25 | 21/25| 19/25
Belongie et. al [15] 25/25| 24/25| 22/25
MDS+SC+DP 23/25| 20/25| 19/25
IDSC+DP 25/25 | 24/25| 25/25
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Figure 2.19: Kimia shape datasets. (a) Kimia dataset 1 [136], 25 instances from 6 cate-

gories. (b) Kimia set 2 [134], 99 instances from 9 categories.

Table 2.4: Retrieval result on Kimia dataset 2 [134] (Fig. 2.19 (b)).
Algorithm 1st/ 2nd| 3rd| 4th| 5th| 6th| 7th|8th| 9th| 10th
SC [134] 97/ 91|88|85/84|77|75|66|56| 37

Gen. Model [147]99| 97 | 99|98|96|96|94|83| 75| 48

Shock Edit [134] 99| 9999|98|98|97|96|95| 93| 82

MDS+SC+DP |99| 98 |98|98|97|99|97|96| 97| 85
IDSC+DP 99/ 99|99/98|98/97|97|98|94| 79

2.7.4 The ETH-80 Image Set

The ETH-80 database [82] contains 80 objects from 8 categories. For each object, there
are 41 images from different viewpoints. So the database contains 3280 images in total.
To analyze appearance and contour based methods for object categorization, [82] first
applied seven different approaches (including SC+DP), each with a single cue (either
appearance or shape). Decision trees were then used to combine those approaches to get
better performance. The test mode is leave-one-object-out cross-validation. Specifically,
for each image in the database, it is compared to all the images from the other 79 objects.

The recognition rate is averaged over all the objects.
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Figure 2.20: ETH-80 image set [82]. This data set contains 80 objects from 8 classes,
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with 41 images of each object obtained from different viewpoints.

We tested the MDS+SC+DP and the IDSC+DP on this data set with parameters:
n = 128, ng = 8, ng = 12 andk = 16. Since only shape information is used, we
compared the result with the seven single cue approaches in [82]. The recognition results
are listed in Table 2.5. It shows that the IDSC works the best among all the single cue

approaches.

Table 2.5: Recognition rates of single cue approaches on ETH-80 database [82]. All

experiments results are from [82] except for MDS+SC+DP and IDSC+DP.

Alg. Color Hist.| D, D, Mag-Lap PCA Masks | PCA Gray|
Rec. Rate 64.85% | 79.79% 82.23% 83.41% 82.99%

Alg. SC Greedy, SC+DP| Decision Treé | MDS+SC+DP | IDSC+DP
Rec. Rate 86.40% | 86.40% 93.02% 86.80% 88.11%

* The decision tree is a multi-cue method which combines all the previous seven
single-cue methods.
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2.7.5 Foliage Image Retrieval

In this subsection we will demonstrate the application of the inner-distance on a real and
challenging application, foliage image retrieval. Leaf images are very challenging for

retrieval tasks due to their high between class similarity and large inner class deforma-
tions. Furthermore, occlusion and self-folding often damage leaf shape. In addition, some
species have very similar shape but different texture, which therefore makes the combi-

nation of shape and texture desirable.

Swedish Leaf Database

The Swedish leaf dataset comes from a leaf classification project abpim Univer-

sity and the Swedish Museum of Natural History [141]. The dataset contains isolated
leaves from 15 different Swedish tree species, with 75 leaves per species. Fig. 2.21 shows
some representative silhouette examples. Some preliminary classification work has been
done in [141] by combining simple features like moments, area and curvature etc. We
tested with Fourier descriptors, SC+DP, MDS+SC+DP, IDSC+DP and SPTC+DP with
parameters, = 128, ng = 8, ng = 12, n, = 8 andk = 1. Each species contains

25 training samples and 50 testing samples per species. The recognition results with 1-
nearest-neighbor are summarized in Tab. 2.6. Notice that unlike other experiments, the
articulation invariant signature works a little better than IDSC on the leaf images. One
possible explanation is that, as a real image dataset, the inner-angle for leaves are less

robust due to boundary noise. Also notice that SPTC improves IDSC as we had expected.
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Figure 2.21: Typical images from Swedish leaf data base, one image per species. Note

that some species are quite similar, e.g. the 1st, 3rd and 9th species.

Table 2.6: Recognition rates on the Swedish leaf dataset. Note that MDS+SC+DP and
SPTC got same rates.

Alg. |Soderkvist [141]|Fourier SC+DP MDS+SC+DRIDSC+DP|SPTC+DH
Rec. Rate 82% 89.6%88.12%  95.33% 94.13% | 95.33%

v

Smithsonian Isolated Leaf Database

This data set comes from the Smithsonian project [4] which is aimed to “build a digital
collection of the Smithsonian’s collection of specimens and provide means to access it
with text and photos of plants”. We designed an Electronic Field Guide image retrieval
system that allows online visual searching. For example, during a filed test, a botanist
can input a picture of an unknown leaf to the system and get the most visually similar
leaves in a database. A detailed description of the system can be found in [7]. The task is
very challenging because it requires querying from a database containing more than one
hundred species and real time performance requires an efficient algorithm. In addition,
the pictures taken in the filed are vulnerable to lighting changes and the leaves may not
be flattened well.

We evaluated the proposed approaches on a representative subset of the leaf image
database in the systémThe subset contains 343 leaves from 93 species (the number

of leaves from different species varies). In the experiment, 187 of them are used as the

3http://iwww.cs.umd.edu/hbling/Research/data/SI-93.zip
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Figure 2.22: Smithsonian data set, containing 343 leaf images from 93 species. One

typical image from each species is shown.

training set and 156 as the testing set. Note that there are only two instances per class
in the training set on average. The retrieval performance is evaluated using performance
curves which show the recognition rate among thetofeaves, whereV varies froml
to 16.

For the efficiency reasons mentioned above, only 64 contour points are used (i.e.
n = 64). The similarity between leaves is measured by the shape context diflancee
Sec. 2.2.3 or [15) because it is faster than DP. Other parameters used in the experiment
areny = 5, ng = 12, andn, = 8. Note thatk is not needed because DP is not used here.
The performance is plotted in Fig. 2.23. It shows that SPTC works significantly better
than other methods. Fig. 2.24 gives some detailed query results of SPTC and IDSC,

from which we can see how SPTC improves retrieval result by also considering texture

information.

41t is based on a greedy matching and should not be confused with the bipartite matching based ap-

proach.
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Figure 2.23: Recognition result on the Smithsonian leaf dataset. The ROC curves shows

the recognition rate among the tdpmatched leaves.

2.7.6 Human body matching

In this experiment, we demonstrate the potential for using the proposed method on human
body matching, which is important in human motion analysis. The dataset is a human
motion sequence from a stationary camera, collected at the Keck lab at the University of
Maryland. Silhouettes are extracted with background subtraction. Our task is to match
the silhouettes from different frames. For adjacent frames, IDSC+DP performs very well,
as demonstrated in the left of Fig. 2.25. For two silhouettes separated by 20 frames, the
articulation turns out to be large and the matching becomes challenging. The IDSC+DP
also gives promising results (see the right part in Fig. 2.25, for example). An application

of the inner-distance to human motion analysis can be found in [85].
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Figure 2.24: Three retrieval examples for IDSC and SPTC. The left column shows the
guery images. For each query image, the top four retrieving results are shown to its right,
using IDSC and SPTC respectively. The circled images come from the same species as

the query image.

2.8 Conclusion and Discussion

In this chapter we proposed using the inner-distance to build shape descriptors. We show
that the inner-distance is articulation insensitive and is good for complicated shapes with
part structures. Then the inner-distance is used to build better shape representations. We
first build articulation invariant signatures for 2D shapes by combining the inner-distance

and MDS. After that, we extended the shape context with the inner-distance to form a
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Figure 2.25: Human silhouettes matching. Left: between adjacent frames. Right: silhou-
ettes separated by 20 frames, note that the hands are correctly matched. Only half of the

matched pairs are shown for illustration.

new descriptor, and designed a dynamic programming based method for shape matching
and comparison. Then, the descriptor is extended to capture texture information in a nat-
ural and efficient way. In retrieval experiments on several data sets, our approach demon-
strated excellent retrieval results in comparison with several other algorithms. In addition,
the approach is tested on sequential human silhouettes. Good matching results show the
potential for using inner-distances in tracking problems. From these experiments, we are
confident that the inner-distance works for shapes with complex part structure, particu-
larly with large articulation. In addition, it is worth noting that the technique had been
applied for a real electronic field guide system [7].

There are several interesting issues about the inner-distance we want to address

here. First, to compute the inner-distance the shape boundary is assumed to be known.
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This limits the approach to applications where the segmentation is available. Second,
the inner-distance is sensitive to shape topology which sometimes causes problems. For
example, the occlusion may cause the topology change of shapes. In addition, the inner-
distance may not be proper for shapes involving little part structure and large deformation

(no articulation).
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Chapter 3
Deformation Invariant Image Descriptors

3.1 Introduction

We propose a novel framework for building image descriptions that are invariant to defor-
mations. An intensity image is treated as a surface embedded in 3D space, with the third
coordinate proportional to the intensity values withampect weighty and the first two
coordinates proportional te-y with weight1 — «. As « increases, the geodesic distance

on the embedded surface becomes less sensitive to image deformations. In the limit when
a — 1, the geodesic distance is exactly deformation invariant. Based on this idea, we use
geodesic samplintp get sample points on the embedded surface, then builgkibeesic-
intensity histogran{GIH) as a local descriptor. GIH captures the spatial distribution of
intensities on the embedded manifold. With= 1, it is exactly invariant to deformation.

In matching experiments on data sets with both synthetic and real deformations, GIH
demonstrates promising results in comparison to other approaches.

Our work builds on much recent work on invariant local descriptors. This work has
found wide application in areas such as object recognition [40, 96], wide baseline match-
ing [129, 148], image retrieval [130]. However, this previous work focuses on invariance
to specific transformation groups, such as affine transformations. Affine invariant match-
ing is useful when viewpoint changes relative to a rigid object that has locally planar

regions large enough to contain distinctive intensity variations. It is less appropriate for
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objects without planar parts. For example, with a white Lambertian object, all intensity
variations are due to 3D shape variations that lead to non-affine deformations as view-
point changes. We are also interested in matching images of non-rigid objects, such as a

flag waving or an animal moving its body (see Figure 3.1).

(a) (b)

Figure 3.1: Two images to be matched. Note that the right bottom corner of the flag in (b)

is folded.

We make two main contributions. 1) To our knowledge, GIH is the first local image
descriptor that is invariant to general deformations. Note that although intensity is invari-
ant to deformation, color histogram is not in general. This is because the deformation may
change the count of pixels with given intensity values. 2) Embedding images as surfaces
in 3D and varying their aspect weight provides a novel framework for dealing with image
deformation. This also suggests methods for finding deformation invariant feature points,
and for building descriptors in which we trade off discriminability and deformation in-
sensitivity with our choice ofv. In addition, GIH does not require a specific interest

region detector, since geodesic sampling automatically determines regions for gathering
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information.

The rest of the chapter is organized as follows. Sec. 2 discusses related works. Sec.
3 discusses deformation invariant features. Sec. 3.1 provides intuitions about deformation
invariance through a 1D example. Sec. 3.2 shows how the aspect wergtates to
deformations by studying its relation to curve lengths on embedded image surfaces. Sec.
3.3 talks about geodesic distances and their computation and Sec. 3.4 explains geodesic
sampling. Sec. 3.5 introduces the proposed descriptor, the geodesic-intensity histogram.
Sec. 3.6 discusses several practical issues in using GIH, including illumination change,
the interest points, and the choicecafSec. 4 describes all the experiments and analyzes
the results. Sec. 5 concludes.

Part of this work appears in [90].

3.2 Related Work

Deformation appears in a large range of computer vision areas. A non-exclusive list
includes object recognition [51, 36, 38, 91], face detection [39, 30], shape analysis [12,
138], stereo matching [100, 148], motion analysis [121, 163], etc.

Lots of research effort contributes to the study of local descriptors which are invari-
ant to geometric or more general invariant descriptors. Among them the affine transforma-
tion is the mostly studied, because its relative simplicity and the fact that many complex
image transformation can be locally approximated by it. For example, Lindeberg [88] pro-
posed extracting scale invariant regions via the extremum of the scale space. Lowe [96]

proposed a fast and efficient way to compute the scale invariant feature transform (SIFT),
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which measures the gradient distribution in detected scale invariant regions. Mikolajczyk
and Schmid [103] proposed an affine invariant interest point detector through combining
a scale invariant detector and the second moment of Harris corners [55]. Other work on
affine invariant features can be found in [68, 119]. Mikolajczyk and Schmid [102] gave a
review and performance evaluation of several local descriptors including steerable filters
[43], moment invariants [46], complex filters [129, 13], scale invariant feature transform
(SIFT) [96] and cross-correlation.

Though achieving success in a wide range of vision tasks, the affine invariants have
some limitations. First, object shape change can not always be accurately approximated
by affine models, e.g. the flying flags in Fig. 3.1. Second, viewpoint change of non-planar
surfaces is non-linear in general. Invariants to more general deformation are therefore
desired, which is the main interest in this chapter.

Matas et al. [100] proposed usimgaximally stable extremal regiciMSER) for
robust wide baseline matching.

Vedaldi and Soatto [150] gave a theoretic study of viewpoint invariants for non-
planar scenes. With the Lambertian and non-occlusion assumption, they proved the exis-
tence of non-trivial viewpoint invariants and discusses trade-offs in shape-discriminability.

Lepetit et al. [83] treated wide baseline points matching as a classification problem
and used randomized trees [10] for a solution. Their method is robust to viewpoint change
by synthesizing features from different viewpoints during the training stage. Furthermore,
this also makes the approach very time-efficient for real applications. Benefitting from
this work, Pilet et al. [121] presented a real-time approach for detecting non-rigid sur-
faces. They model a deformable surface with a mesh structure, and the optimum defor-
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mation is obtained through minimizing a criterion that balances distortion and smoothing.

Our method can be categorized with so-called distribution based descriptors, which
use histograms to capture local image information. These include the spin image [80, 65],
shape context [15], and PCA-SIFT [71]. Our method differs from all these in two ways.
First, our method is invariant to all deformations. Second, our descriptor automatically
detects its support region, i.e., it does not need a special deformation invariant detector.

Treating images as 2D surfaces embedded in 3D space is not new. Our work is
particularly motivated by the Beltrami framework proposed in [140]. They treat images
as 2D manifolds and operators on the manifold are applied directly on the surface for low
level vision tasks such image enhancement. Our work focuses more on feature extrac-
tion. Also we are more interested in using large aspect weights to produce deformation
invariance.

Geodesic distance has also been used in object recognition. For example, in [36]
it is used to build bending invariant signatures for real surfaces. Our work is different in
that we are using embedded surfaces that vary according to aspect weights. This achieves
deformation invariance for 2D images, as opposed to bending invariance for 3D data.

This work can also be viewed as a general version of our previous work of using
the inner-distance for shape matching [91]. If we treat a given shape as a binary image,
the inner-distance between two boundary points is the same as the geodesic distance used

in this chapter fory near 1.
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3.3 Deformation Invariant Features

In this section we first discuss deformation invariance within the framework of embedded
image surfaces, then introduce geodesic sampling and the geodesic-intensity histogram,
which is invariant to deformation. After that, some practical issues in using this descriptor

are discussed.

3.3.1 Intuitions about Deformation Invariance

We consider deformation as homeomorphisms (continuous, one-to-one transformations)
between two images. Intensities change position, but not their value, with deformations.
To obtain distinctive descriptors we collect intensities from a neighborhood. Our problem
is to do this in a way that is invariant to deformation.

To gain intuition, we consider a one dimensional image. Figure 3.2(a) shows two
1D imagesl;, I, with height denoting image intensity (dashed lines are the geodesics
between marked points). They look quite different, but they are related by a deformation
(composed of stretching and compressing in different places). Consider the images as 1D
surfaces embedded in a 2D space, where intensity is scaledthg aspect weighand
x is scaled byl — «a. Using differentas produces the images in Figure 3.2 (b,c,d). We
see that whem increases, the graphs of the two embedded images look more and more
similar. It is natural to expect that they become exactly the same as 1. One way
to explain this is thaty controls the weight on the intensity compared to the weight on
the image coordinate. A largermeans that we place more importance on the intensity,

which is deformation invariant. Se@ = 1 leads to a deformation invariant view of the
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Figure 3.2: Deformation invariance for one dimensional images. Details in Section 3.3.1

How doesx work? Letp;, ¢; be two points oy, with their deformed counterparts
P2, q2 ON I, Consider the geodesic distangebetweerp; andg; on al; andg, between
p2 andge onal,. Figure 3.2 (e) shows hoy andg, vary for differenta, from which we
see that; andg, tend to become similar whenincreases. This implies that the geodesic
distance on the embedded surface tends to be deformation invariantwheh

This provide a solution for the problem of finding deformation invariant neighbor-
hoods. For a given interest point, we can use the geodesic distance to find and sample

within a neighborhood, and then build a descriptor based on the intensities of the sampled
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points. If the procedure is done with a very largé€in the limit approaching), then the

descriptor is deformation invariant, which is exactly what we want.

3.3.2 Curve Lengths on Embedded Surfaces

In this section we show that asincreases, the lengths of curves change less and less
when an object deforms. Ldi(z,y) be an image defined as: R? — [0,1]. Let
I>(u,v) be a deformation of,;. Because deformation is a homeomorphism, and so it
is invertible, we can writex = u(z,y),v = v(z,y), v = z(u,v),y = y(u,v), and
L(u,v) = (z(u,v), y(u,v)).

Denote the embedding of an imafer, y) with aspect weightv aso (I; o) = (2’ =
(1 —-a)z,y = (1 —a)y,z = al(x,y)). Denoteoy, o, as the embeddings df, I,

respectively

=" = (1 —a)r,y’ = (1 - a)y, 2’ =ali(z,y))

o= = (1 — @)u,v' = (1 — a)v,w' =aly(u,v))

Let~, be aregular curve o, t € [a, b], andy, the deformed version of this curve
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Where

w'(t) =aly(u(t), v(t)) =al(t) =alh(z(t), y(t)) = =(t)

because the intensity is invariant to deformation,

Now we can study the length ef, 7», denoted a$;, [, respectively. We have

b
I :/ T+ ypP + z2dt

b
:/ \/(1 —a)?z? + (1 — «)?y? + o?I3dt (3.1)
b
Iy :/ VU 4+ v + widt
b
:/ \/(1 —a)?u? + (1 — )0} + o?I2dt (3.2)

Where the subscripts denote partial derivatives, e,6-dz/dt, u; = Ou/0t, etc....

From (3.1) and (3.2) it is clear that for a largethe curve length is dominated by
the intensity changes along the curve. In the limit wher: 1, /4, [, converge to the same
value. Also, the length of curves with constant intensities tend to be trivial compared to
lengths of curves with non-constant intensities.

In the rest of the chapter, when talking about deformation invariance, we implicitly

assume that — 1.

3.3.3 Geodesic Distance and Level Sets

It follows from the last subsection that tlgeodesic distangewnhich is the distance of
the shortest path between two points on the embedded surfaces, is deformation invariant.
Given an interest point, = (xo, o), the geodesic distances from it to all other points
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on the embedded surfae€/; o) can be computed using the level set framework [135].
Points with identical geodesic distances frpgnare treated as level curves. For images
defined on discrete grids, the fast marching algorithm ([135]) provides an efficient method
of computing these curves.

Figure 3.3 shows two example results of the geodesic distances computed for real
images. It shows that whenis small (in (c),(d)), the geodesic distances are almost like
Euclidean distances in the image plane. With a larda (e),(f)), the geodesic distance
captures the geometry of image intensities and automatically adapts to deformation.

One interesting issue is that since real images are defined on discrete grids, the
fast marching method we use implicitly assumes that the surface is piecewise constant
(constant within the region of each pixel). The image can also be interpolated as a smooth
surface, in which case the arguments above still hold.

In the real implementation, instead of usinge [0, 1], we fix the weight forz — y
as 1 and usg as the weight for intensity € (0, co). This is practically useful because it
avoids the possible singularities. An obvious relation betweandg is 8 = /(1 — «).

Fast marching
¢+ F|Vo[ =0 (3.3)
Where we use

F =

V1toi+o]

as the front marching speed.
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Figure 3.3: Geodesic distances computed via fast marching. The marked point in (a)
corresponds to the marked point in (b) after deformation. (c),(e) shows the geodesic
distances of all pixels in (a) from the marked point, with differeist Darker intensities

mean large distances. (d),(f) shows the same thing for the marked point in (b). Note that

image structures of (a) and (c) are captured in the distance map in (e) and (f).

66



3.3.4 Deformation Invariant Sampling

Geodesic level curves provide us a way to find deformation invariant regions surrounding
interest points. These regions can be used as support regions for extracting deformation
invariant descriptors. To derive invariant descriptors, we must also sample these regions
using geodesic distances, to find deformation invariant sample points. In the folldwing

is used to denote the sampling interval.

Geodesic sampling for 2D images is done in two steps.

e The level curves are extracted at interval\of

e Points are sampled from each level curve at interval& .of

Figure 3.3.4 gives examples of 2D geodesic sampling. Note that the sampling along
uniform intensity regions is sparser than along regions with large intensity variation. In-
tuitively, this implies that deformations (such as stretching) will not change the number of
sample points, although it may change their locations. We sample densely, so that changes

in the location of sample points do not have much effect on the resulting histogram.

3.3.5 The Geodesic-Intensity Histogram

Now we introduce thgeodesic-intensity histogra(@IH), which is a deformation invari-

ant descriptor extracted from geodesic sampling. It captures the joint distribution of the
geodesic distance and the intensity of the sample points. Since both the geodesic distance
and the intensity are deformation invariant, so is the GIH. It is based on spin images,

which produce a related descriptor using Euclidean distance ([80, 65]).

67



(a) (b)
Figure 3.4: 2D geodesic sampling.= 0.98. A large interval is used for better illustra-
tion. The interest points (the red '+’ points in the center) are the same as in Figure 3.3
(a),(b). Level curves of the same colors correspond to the same geodesic distances. The
yellow cross points are the sampled points.
Given an interest point, together with a sample point sBf obtained via geodesic
sampling, the GIHH,, atp is a normalized two dimensional histogram obtained through

the following steps:

1. Divide the 2D intensity-geodesic distance space iKte M bins. HereK is the
number of intensity intervals, ant/ the number of geodesic distance intervals.

The geodesic intervals can be segmented either linearly or at log scale.

2. Insert all points inP, into H,: V1<k<K,V1<m<WM, H,(k,m) = #{qeH, :
(1(q),9(q))eB(k,m)}. Herel(q) is the intensity a#;, g(q) is the geodesic distance
atq (fromp), andB(k, m) is the bin corresponding to thieh intensity interval and

themth geodesic interval.

3. Normalize each column off, (representing the same geodesic distance). Then
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normalize the wholé7,,.

Figure 3.5 displays examples of the geodesic-intensity histograms of two points
with deformation. The two histograms are quite similar, although the deformation be-

tween the two images is quite large.

intensity
intensity

geodesic distance geadesic distance

(2) (b)

Figure 3.5: Geodesic-intensity histograms= 0.98, K = 10, M = 5. (a), (b) for points

in Figure 3.3 (a),(b) respectively.

Given two geodesic-intensity histograff,, H,, the similarity between them is

measured using the? distance:

2, NI oM [Hy(k,m) — Hy(k,m))?
CeO=52, 2, H,y(k,m) + Hy(k,m) (34)

3.3.6 Practical Issues

Dealing with illumination change. We use an affine model for lighting change ([102]),
i.e.,al(z,y) + b for the illumination change of the pixel &t,y). There are two steps

to make GIH insensitive to lighting change. 1) GIH is made invariant to lighting in the
same way as [102]. That is, when building the histogram, the intensity is normalized

by subtracting the mean and then divided by the standard deviation, where the mean
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and deviation is estimated on the sampled pointzet2) Compensate for the effect of
lighting change on the geodesic sampling. For largine intensity change dominates the
geodesic distance (3.1,3.2). So the change of geodesic distance is approximately linear
with ratea under the lighting model, which is equivalent to changintp a«. So when

we compare two interest points, we compare several GIH’s that use diftésgand pick

the match with minima? distance (3.4).

Interest points. GIH does not require a special interest point detector since it automat-
ically locates the support region. However, there are problems with using some feature
points. First, deformation invariance makes points within a constant region indistinguish-
able. Second, for real images the intensity on edges or corners may vary due to sampling.
We have found thatxtreme pointswvhere images have local intensity extremum, are less
affected by the above factors (they are locally unique in the continuous cases). The ex-
treme point can be viewed as a deformation invariant version of the DoG point proposed
by Lowe [96], which is scale invariant. In Sec. 3.4.3 we tested the performance of GIH
using several different interest point operators.

Choosinga. In the following experiments we will use a very largg0.98) because we

want to deal with large deformations. However, in domains involving only small deforma-
tions, a relatively smallerr might be a better choice. Smalleis can lead to descriptors

that are somewhat insensitive to deformations, but that provide more information since
they do not treat images related by large deformations as identical. It is obvious that GIH

with a = 0 becomes equivalent to spin images [80].
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3.4 Experiments

In this section we will describe our experiments using the GIH for interest point match-
ing. Experiments were conducted on two groups of image pairs. One contains synthetic
deformation as well as illumination change, the other contains real non-affine deforma-
tions. We have two experiments. The first one compares the GIH’s matching ability to
several other approaches. The second experiment studies the performance of GIH using

several different kinds of interest points including the proposed extreme points.

3.4.1 Experimental Setup

Data setWe evaluate the proposed method using two groups of images. The first group
contains eight image pairs with synthetic deformation and illumination change (see Figure
3.6, the original images are from the Berkeley segmentation dajasgte deformation

is created by mapping the original images to non-flat surfaces and viewing them from
different viewpoints. The lighting change is generated through an affine model (intensities
limited to [0..1]). The second group contains three pairs of images with real deformations
(see Figure 3.7).

Interest point We use Harris-affine points [103] for the matching experiments. The in-
terest point is detected using the online code provided by Mikolajczyk [101]. One reason
for this choice is its affine invariance. This makes the other descriptors invariant to affine
transformation, although it is not necessary for our descriptor. The other reason is that

[101] also provides executable codes for several state-of-art descriptors that we can use

Ihttp://www.cs.berkeley.edu/projects/vision/grouping/segbench/
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Figure 3.6: Four of the eight pairs of images with synthetic deformation and illumination

change.

for comparison. For each image, we pick the 200 points extracted by the detector with
the largest cornerness.

Evaluation criterion For each pair of images together with their interest points, we first
obtained the ground truth matching (automatically for synthetic images, manually for
real images). Then, for efficiency we removed those points in image 1 with no correct
matches. After that, every interest point in image 1 is compared with all interest points in
image 2 using the descriptors to be compared. An interest ppintimage 1 is treated

as a correct match of another pojntin image 2 if the deformation qf; is within a three

pixel distance ofp,. The detection rate among the tdp matches is used to study the
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Figure 3.7: Images with real non-affine deformation.

performance. The detection rate is defined in a way similar to [102]:

_ #correct matches  #correct matches

(3.5)

 #possible matches — #points in image 1
3.4.2 Matching Experiment

In this experiment we will study the performance of GIH in comparison with several other
methods. The experiments are conducted on both the synthetic and real deformation data
sets. All of them use the Harris-Affine interest point.
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Mikolajczyk and Schmid [102, 101] provided convenient online code for several
state-of-the-art local descriptors. The descriptors are normalized to enable direct compar-
ison using sum of square differences (SSD). Benefitting from their code, we compare the
geodesic-intensity histogram with steerable filters [43], SIFT [96], moments invariants
[46], complex filters [129] and spin images [80].

The main difference between the evaluation here and that in [102] lies in that [102]
focused more on the evaluation of region-like descriptors. For example, some of their
experiments use interest regions instead of interest points. Furthermore, their matching
criterion between two features is also related to their support regions. Also note that the
Harris-Affine point is chosen because it provides affine invariant support regions to the
descriptors we will compare to, although it is not necessary for GIH (see Sec. 3.4.3).

We tested two versions of the geodesic-intensity histogram. Version onevuses
0.98, K = 13, M = 8. This tests the ability of the GIH. The other version is a degenerate
version wherex = 0, K = 10, M = 5. This demonstrates that GIH becomes like spin
images fora = 0.

A Receiver Operating Characteristics (ROC) based criterion is used which is similar
to the one in [102]. Instead of using the false positive rate, we study the detection rates
among the topgV matches, agv varies.

Figure 3.8 displays the ROC curves for the experiment on the synthetic deformation
data set and Figure 3.9 for the real deformation data set. From the ROC curves we can see
that GIH performs better than other methods in both data sets regardless of illumination
changes. Note that fer = 0, the performance drops a lot, with the performance similar
to spin images (with no affine invariant support region).
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Figure 3.8: Experiment results on the synthetic deformation data set (see Figure 3.6).

3.4.3 Interest Points

This experiment is to test the performance of GIH using several kinds of interest points.
In addition to extreme points and DoG [96] points, we also tested on Harris corners [55]
and Harris-Affine points [103]. We use the code provided at [101] except for the extreme
points. The experiment is conducted on the synthetic deformation data set. For each im-
age, 200 points are picked with the largest detector responses (cornerness, for example).
For extreme points, the response is computed through Laplace-of-Gaussian filtering. The
same parameters for GIH are used for all kinds of interest paints().98, K = 13, M =

8.

Since different interest point detectors may generate different number of correct
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Figure 3.9: Experiment results on the real deformation data set (see Figure 3.7).

correspondences, the ROC curves is plotted as the detection rate versus the false positive
rate instead ofV as in the previous experiment. The false positive rate is defined as

(similar to [102])

# false matches
T false = ; . : .
Jal (#points in image 1)(#points in image 2)

Figure 3.10 shows the ROC curves. From the figure we can see that GIH works better
than the others for small false positive rate less than 0.03 (this roughly corresponds to the
top 6 matches). For large false positive rates, DoG performs the best. The Harris corner

works the worst with GIH, which is consistent with our previous discussion.
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Figure 3.10: GIH using different kinds of interest points. The false positive rate 0.04

roughly corresponds t&/ = 8 as in Figure 3.9 and 3.8.

3.5 Conclusions

In this chapter we proposed a novel deformation invariant feature, the geodesic-intensity

histogram, for intensity images. Images are treated as 2D surfaces embedded in 3D
spaces. We then showed that the geodesic distance along the surface is invariant to de-
formation when the embedding aspect weight- 1. The geodesic-intensity histogram

is a 2D histogram measuring the geodesic distances and the intensities surrounding an
interest point. With the geodesic sampled neighborhood points and-anl, the pro-

posed histogram becomes deformation invariant. After that, we discussed practical issues

including how to deal with illumination change and the option of choosirig balance
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deformation invariance and discriminativity. The proposed descriptor is tested on data
sets with both synthetic and real deformations. In all the experiments the new descriptor

performs excellently in comparison with several other methods.
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Chapter 4
Using A Gradient Orientation Pyramid for Robust Passport Photo
Verification

4.1 Introduction

Face verification across ages is an important problem and has many applications, such as
passport photo verification, image retrieval, face animation, surveillance, etc. This is a
challenging task because human faces can vary a lot over time in many aspects, including
facial texture (e.g. from winkles), shape (e.g. from weight gain), facial hair, presence
of glasses, etc. In addition, the image acquisition conditions and environment for taking
face photos often undergoes a large change, which can cause non-uniform illumination
and scale changes.

In this chapter we are interested in passport photo verification. Since real photos are
used instead of digital ones, scanning is needed in image acquisition. This process often
causes additional challenges. For example, the original photo can be smudged. Scanning
sometimes also causes saturation and/or additional noise. Some typical passport images
with different age gaps are shown in Fig. 4.1.

It is natural to model face verification as a two-class classification problem, i.e.,
intra-personalandextra-personatlassification [108]. Previous works did this using the

intensity difference [120] or (normalized) intensity [67] as an input feature for support
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vector machines (SVM) [149]. These approaches largely relied on SVM’s ability to au-
tomatically extract the relevant information from the input features. However, for face
images involving large age differences, it is difficult for SVM to handle the previously
mentioned problems, such as non-uniform lighting variation.

We are interested in finding robust face descriptions especially to lighting. Inspired
by the work on lighting insensitivity with a Lambertian assumption and its application to
face recognition [25], we propose using a gradient orientation pyramid (GOP) as a reli-
able face descriptor. First, by discarding magnitude information, the gradient orientation
is insensitive to lighting change [25]. Second, we use the pyramid to bring in hierarchical
information. Then, given a face image pair, we use the cosines between gradient orien-
tations at all scales to build the “difference” between the pair. Finally, the “difference”
is combined with SVM for face verification tasks. We applied the proposed approach
for passport verification tasks and tested it on two passport image datasets with large age
differences. Promising results are observed in comparison with several other approaches,
including the Bayesian+PointFive face [123], the SVM+difference space [120], two com-
mercial face recognition products, etc.

The main contribution of this chapter is the proposed orientation direction + SVM
approach for face verification. Though simple, the proposed approach achieves very
promising results on the challenging passport photo verification task. A side message
from our experiments is that a better representation (e.g. gradient direction) can some-
times improve the performance of SVM dramatically (e.g. compared to the intensity
difference) - this is interesting because SVM is known to be good at automatic feature

selection/extraction.
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Figure 4.1: Typical passport images with age differences [123]. Note the smudging on

image (b) and the saturation caused by scanning in (e).

The rest of the chapter is organized as following. Sec. 4.2 discusses the related
work. After that, the framework for face verification using the support vector machine is
described in Sec. 4.3. Then, we introduce the gradient orientation pyramid in Sec. 4.4.
Sec. 4.5 describes our experiments on two passport image datasets involving large age
separations. Finally, Sec. 4.6 concludes.

Part of this work appears in [52].

4.2 Related Work

Face recognition and detection has been widely studied for several decades. A thorough
survey can be found in [164]. A lot of work has been done to handle the problem under
different conditions, including lighting, pose, expression, etc. The aging process and
its effect on face analysis, which we are interested in, has recently attracted research

effort. Most work has focused on modelling the aging process [124], age estimation
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[75, 77,123, 166], and simulation [78]. In comparison, face verification across ages is far
less studied [123].

Modelling face verification as a two-class classification problem is not new. Moghad-
dam et al. [108] used a Bayesian framework for the intra-personal and extra-personal face
classification. Phillips [120] used SVM for face recognition problems and observed good
results on the FERET dataset compared to component based approaches. Jonsson et al.
[67] used SVM for face authentication problems. Our work is different in that we use the
gradient orientation pyramid instead of intensity differences [108, 120] or the intensity
itself [67] as a face description. Furthermore, we are more interested in passport photos
with age differences.

Ramanathan and Chellappa [123] adapted the probabilistic eigenspace framework
[107] for face identification across age progression, which is the most related to our
work. Instead of using a whole face, only a half face (called a PointFive face) is used
to alleviate the non-uniform illumination problem. Then, the eigenspace technique and
a Bayesian model is combined to model the inter-personal and extra-personal image dif-
ferences. Model parameters are learnt by an EM scheme and the inference is done in a
standard MAP fashion. The approach demonstrated promising results on a passport photo
verification task. Our work also focuses on face verification across ages but differs from
their work in two ways. First, different descriptors are used. Second, we use SVM instead
of the Bayesian eigenspace framework.

Image gradients are widely used for feature building. Lowe [96] proposed the scale
invariant feature transform (SIFT) that uses the weighted histogram of gradient orientation
as local descriptors. SIFT has been used for many applications including face detection

82



[139]. Dalal and Triggs [32] proposed using histograms of oriented gradients (HoG) for
human detection. The work is further extended by Zhu et al. [168] using a cascade scheme
to gain more efficiency. Unlike these work, we exclude magnitudes of image gradients
and use only the orientations.

The direction of image gradient has been proposed for lighting insensitive recog-
nition (e.g. [17]) and was shown to be insensitive to changes in lighting direction under
a Lambertian assumption [25]. To the best of our knowledge, this is the first time the
gradient direction is combined with SVM for face verification problems. In addition, we

also propose using hierarchical structure to further improve descriminability.

4.3 Problem Formulation

4.3.1 Task Description

Passport photo verification is important in the process of passport renewal and related
face authentication applications. For example, when a person submits a new photo for
renewal, the ideal system can automatically tell whether he is an imposter by comparing
the new photo to previous photos that are usually taken years before.

Due to the challenges of this task, it is not realistic to expect one hundred percent
accuracy. However, we can still use computer vision techniques to save human effort on
this task. A common way to evaluate verification uses two criterion: the rate of correct
rejection on imposter images (correct reject rate) and the rate of correct acceptance (cor-
rect accept rate) on true images. These two rates conflict although we want both rates to

be as high as possible. In practice for the passport verification task, the correct reject rate
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is most important because rejected images will be examined by a human. For example,
we can fix such a rate at a very high level (e.g., 99%) while making the correct acceptance

rate as high as possible.

4.3.2 Classification Framework

We model face verification as a two-class classification problem [108, 120, 67]. Given
an input image paif; and I,, the task is to assign it as eithieitra-personalor extra-
personal In this section we briefly describe the framework of using a support vector
machine for this task. Details about support vector machines can be found in [149, 22].

Given any image paif/y, 1), it is first mapped it into the feature space. Formally,
we have,

x = F(I,,I,) € R

wherex is the feature vector extracted from the image pair />) through the feature
extraction function (functionalf (., .), andR¢ is thed-dimensional feature space.

Then the support vector machine is used to divide the feature space into two classes,
one for intra-personal pairs and the other for extra-personal pairs. Using same terminol-

ogy as in [120], we denote the separating boundary with the following equation
N,
> ayiK(s;,x)+b=A (4.1)
=1

where N, is the number of support vectors ands thei-th support vectorA is used to
trade off the correct reject rate and correct accept rate as described in S€€(4.pis

the kernel function that provides SVM with non-linear abilities. The RBF kernel is chosen

84



in our experiment due to its effectiveness and efficiency. The RBF kernel is defined as

K (x1,X2) = exp(—7 * |x1 — X2|2) (4.2)

where~ is a parameter determining the size of RBF kernels. In our experiments, we use
the OSU SVM toolbox [97] that provides a convenient Matlab interface to the LibSVM

library [24].

4.4 Gradient Orientation Pyramid

There is one question left open in the previous section: wha{is.)? A natural choice

is to use the intensity difference betwegnand I, which is calleddifference spacé

[108] and also been used in [123, 120]. With an appropriate hormalization scheme, the
intensity difference can be made robust to affine lighting changes. However, the affine
lighting model is not always sufficient for face images, especially for images taken at
times separated by years. Instead, to alleviate this problem, we propose using the cosine
of gradient orientations as features of image pairs, because gradient orientation is known
to be insensitive to lighting change [25]. In addition, we organize the gradient orientation

in a hierarchical fashion, which further improves its discriminability.

4.4.1 Gradient Orientation Pyramid

Our proposed features are partly motivated by recent work on using gradient informa-
tion for object representations ([96, 32]). In these works, the gradient directions were
weighted by gradient magnitudes. To make the feature more reliable, we discard the gra-
dient magnitudes inspired by [25]. Furthermore, the gradient directions at different scales
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are combined to make a hierarchical representation.
Given an imag€d (p), wherep = (z,y) indicates pixel locations. We first define

the pyramid ofl asP(I) = {I(p;0)}:_, as

I(p;0) = I(p)
(4.3)
I(p;o) = [[(pio—1)*®(p)la o=1..,s
where®(p) is the Gaussian kernel (0.5 is used as the standard deviation in our experi-
ments),|, denotes half size downsampling, andg the number of pyramid layers. Note
that in (4.3) the notation is used both for the original image and the images at different
scales for convenience.

Then, the gradient orientation at each secale defined by its normalized gradient

vectors at each pixel.

g (p;o)) = (4.4)

Naturally, thegradient orientation pyramigGOP) of!, is defined ag (1) = {g(I(p,0))}:_,.

Fig. 4.2 illustrates the computation of a GOP from an input image.

4.4.2 Differences Between GOPs

Given an image paif/;, I,) and corresponding GOR§/ (1), G(I2)), the feature vector

x = F (I, I) is computed as the concatenation of the cosines of the difference between
gradient orientations at each pixels and all scales. The computation can be efficiently
achieved through the inner product of the corresponding entries of GOP, i.e., foppixel

at scaler, it is computed as

f(L(p; 0), Ia(p; 0)) = g(11(p; 0)) - 9(L2(p; 0)) (4.5)
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Input Image Pyranud Gradient Orientations

Figure 4.2: Compute a GOP from an input image. Note: 1) In the right figure, the gradient
orientations at “flat” regions are excluded. 2) The images in the right figure are made

brighter for better illustration.
The cosine values are organized into a feature vects
x=F(I, L) = (.., f(L(p;0), lr(p;0)), ...)" (4.6)

wherep is organized in lexicographic order andn increasing order.

We summarize the advantages of using GOPs for face verification tasks as follow-
ing.

e GOP is insensitive to illumination change [25]. As a result, no normalization is

needed on the input images.

e The pyramid technique provides a natural way to perform face comparison at dif-

ferent scales.

e The inner product between normalized gradient lies in a finite rajrge {]) that

automatically limits the effect of outliers.

In the following, we use SVM+GOP to indicate the proposed approach.
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4.5 Experiments

In this section, we describe experiments applying SVM+GOP on passport image verifi-

cation tasks, in comparison with several other approaches.

45.1 Datasets

We tested the proposed approach on two real passport image datasets, which we will refer
to as Passport | and Passport Il respectively. Passport | is the dataset used in [123], and
contains 452 intra-personal image pairs (several duplicated pairs are removed). Passport
Il contains 1824 intra-personal image pairs. Images in both datasets are scanned passport
images. They are in general frontal images with small pose variations. The lighting
condition varies, and can be non-uniform and saturated. The age differences between
image pairs are summarized in Table 4.1. It shows that both datasets have significant age
gaps for intra-personal images. Fig. 4.3 further shows the distribution of age differences
in the datasets.

Intuitively, Passport Il is more challenging than Passport | for verification tasks
because of the relatively larger age differences. Furthermore, we observed that the image
resolution change in Passport Il is also larger that in Passport I.

In order to created a verification task, 2251 extra-personal image pairs are randomly
generated for Passport | and 9492 for Passport Il.

In our experiments (SVM-based approaches), the images are preprocessed using
the same scheme as in [123]. This includes manual eye location labelling, alignment by

eyes and cropping with an elliptic region. For memory efficiency, image sizes are reduced
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Table 4.1: Passport datasets for identification tasks. “Std.” is short for standard deviation.

Dataset |# intra-personal# extra-personamean agestd. age mean | std.
pairs pairs age diff. age diff.
Passport 452 2251 39 10 4.27 2.9
Passport | 1824 9492 48 14.7 | 7.45 3.2
200 Passport | 500 | Passport 1]
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Figure 4.3: Distribution of age differences in the passport image databases. Left: Passport

l. Right: Passport II.

t0 96 x 84 for Passport | and2 x 63 for Passport Il. In compariso2(7 x 180 is used in
the Bayesian based approach [123].

To alleviate the alignment problem, when comparing two GOPs, we tried different
alignments with small shiftings (2 pixels). In our experiments it helped to improve the

performance by around 0.5% (equal error rate). A similar technique is used by [99].

45.2 Methods

We compared the following approaches:

e SVM+GOP. The approach proposed in this chapter.

e SVM+GO. This is similar to SVM+GOP, except that only the gradient orientation

(GO) at the finest scale is used without a hierarchical representation.

e SVM+G. This one is similar to SVM+GO, except that the gradient (G) itself is
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used instead of gradient orientation. It can also be viewed as weighting gradient

orientations with gradient magnitudes.

o SVM+diff [120]. As in [120], we use the differences of normalized images as input

features combined with SVM.

e Bayesian+PFF [123]. This is the approach combining Bayesian framework [107]

and PointFive Face (PFF) [123].
e Vendor A. This is a commercial face recognition product.

e Vendor B. This is a commercial face recognition product.

Note that Vendor A and Vendor B are two commercial softwaeesl the original

passport images were used as input.

4.5.3 Experimental Evaluation

For verification tasks, the correct reject rate (CRR) and the correct acceptance rate (CAR)
are two critical criterion, which are defined as

CRR — # correct rejected extra-personal pairs
- # total extra-personal pairs 4.7)

# correct accepted intra-personal pairs
# total intra-personal pairs

CAR =

The performances of algorithms are evaluated using the CRR-CAR curves that are
usually created by varying some classifier parameters. We want both rates to be as high
as possible, though they usually conflict. In many face verification tasks such as passport

review tasks, CRR plays more an important role in practice.

1Anonymous due to agreements with the companies.
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For SVM-based approaches, we used three-fold cross validation. For each dataset,
we first (randomly) divide the image pairs into three parts (for both intra-personal and
extra-personal pairs). Then we conducted three experiments, each time picking a different
part as the testing set and the rest as the training set. For each experiment, the CRR-CAR
curve is created by adjusting parametem (4.1). The total performance is evaluated as
the average of the output CRR-CAR curves of the three experiments. For Bayesian+PFF,
we use the results reported according to the experiments in [123].

Fig. 4.4 shows the CRR-CAR curves for the experiments. In addition, Table 4.2
lists the equal error rates (i.e. when CRR=CAR). There are several observations from the

experimental results.

e The proposed SVM+GOP approach demonstrated excellent performance compared
to other approaches. This is particularly true for passport verification tasks because
a high correct reject rate is very important for these tasks. In contrast, the Bayesian-
based approach [123] is more suitable on tasks where high correct accept rate is

desired.

e Among the SVM-based approaches, GOP works the best. The gradient direction
obviously plays a main role in GOP’s excellent performance. In comparison, the
gain of the hierarchical structure is less significantly, especially for a task that re-
quires high correct reject rates. A preliminary experiment is described in the fol-

lowing paragraphs.

e The performance of SVM+diff drops a lot on Passport Il compared to Passport I.
The main reason is that the image resolutions in Passport Il vary more widely than
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in Passport I. In contrast, this shows that the gradient based descriptors are more

robust to resolution change.

Table 4.2: Equal error rates.

Approach| SVM+diff | SVM+G | SVM+GO| SVM+GOP, Bayesian+Vendor Vendor|
[120] PFF[123] A B

Passport| 16.5% | 17.8% | 9.5% 8.9% 8.5% | 9.5% | 11.5%

Passportll 32.2% | 17.4% | 12.0% 11.2% 12.5% |13.5%| 8.0%

To get a sense on how aging affects different descriptors, we analyzed the falsely
rejected intra-personal pairs versus their ages. Specifically, we first collect the false re-
jected image pairs for experiments on both datasets in the SVM-based approaches. We
use the threshold that leads to the equal error rate. Then we divide the errors into different
groups corresponding to different age gaps. The distributions of the errors versus the age
differences are shown in Fig. 4.5. From these distributions we see clearly that SVM+GOP
works consistently better than other descriptors for different age gaps.

To study the effect of the pyramid with larger image size, we conducted experiments
comparing SVM+GOP and SVM+GO on large resolution images. We used randomly
chosen subsets of Passport | and Passport Il due to memory limitations. Specifically, for
Passport |, one third of the image pairs are used with the2sizex 180. For Passport I,
one fourth of the image pairs are used with the digé x 140. The CRR-CAR curves
are shown in Fig. 4.6. Compared to the results in Fig. 4.4, the improvement from using

pyramids is more obvious.
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4.6 Conclusion

In this chapter we proposed a robust face descriptor, the gradient orientation pyramid,
for face verification tasks across ages. Compared to previously used descriptors such
as image intensity, the new descriptor is more robust and performs well on face images
with large age differences. In addition, the pyramid technique enables the descriptor to
capture hierarchical facial information. In our experiments with comparison to several

techniques, the new approach demonstrated very promising results on two challenging

passport databases.
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Part Il

Robust Comparison of Histogram-Based Local Descriptors
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Chapter 5

Introduction to Part Il
1

Histogram-based local descriptofslBLDs) are ubiquitous tools in numerous com-
puter vision tasks, such as shape matching [15, 110, 145, 147, 91], image retrieval [96,
71, 111, 104, 90], texture analysis [80], color analysis [128, 143], 3D object recognition
[65, 114], stereo matching [129, 148], to name a few. For comparing these descriptors,
it is common to applyin-to-bindistance functions, including, distancesy? statistics,
KL divergence, and Jensen-Shannon (JS) divergence [87]. In applying these functions,
we often assume that the domain of the histograms are previously aligned and call them
bin-to-bin distances accordingly. However, in practice, such an assumption can be vio-
lated due to various factors, such as shape deformation, non-linear lighting change, and
heavy noise. Th&arth Mover’s Distancd EMD) [128] is across-bindistance function
that addresses this alignment problem. By modelling one histogram as piles of earth and
another histogram as a set of pits, EMD defines the dissimilarity between two histograms
as the minimum work required to move all the earth to all the pits. In other words, EMD is
the optimization solution of theansportation problenthat is a special case of the linear
programming (LP). Beyond the color signature application originally sought by Rubner

et al. [128], we demonstrate in this chapter that EMD is useful for more general classes

1The main part of this work is done during my internship at Siemens Corporate Research with Dr.

Kazunori Okada.
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Figure 5.1: An example where bin-to-bin distances meet problems. (a),(b) and (c) show
three shapes and log-polar bins on them. (d),(e) and (f) show the corresponding 2D his-
tograms (shape context) of (a),(b) and (c) using the same 2D bins, respectively. The
distances between (d) and (e) and the distance between (e) and (f) are summarized in

table (g). All EMDs here use the, ground distance.

of histogram descriptors such as SIFT [96] and shape context [15].

Fig. 5.1 illustrates an example with the shape context, demonstrating the advantage
of the cross-bin EMD over common bin-to-bin functions. The small articulation of two
blobs between (a) and (b) causes a large change in their corresponding shape contexts as
2D histograms. EMD correctly describes the perceptual similarity of (a) and (b), while the
three bin-to-bin distance functions;, L, andy?, falsely state that (b) is more similar to
(c) than to (a). Despite this favorable robustness property, EMD has seldom been applied
to general histogram-based descriptors (especially local descriptors) to the best of our
knowledge. The main reason lies in its expensive computational cost, which is larger than
O(N?3) (super-cubié) for a histogram withV bins.

Targeting this problem, our contribution is twofold. First, we propose two new fast

2By super-cubic, we mean a complexity@{N?) N O(N*).
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cross-bin algorithm&MD-L; anddiffusion distance

e EMD-L;. The formulation of EMD£; is much simpler than the original EMD
formulation. It has onlyO(/N') unknown variables, which is significantly less than
the O(IV?) variables required in the original EMD. Furthermore, EMBPhas only
half the number of constraints and a more concise objective function. We prove
that EMD-L, is formally equivalent to the original EMD witlh; ground distance.

As an optimization solver for EMDO-; computation, we designed an efficient tree-
based algorithm. The new algorithm greatly improves the efficiency of the original
transportation simplex algorithm as used in [128]. An empirical study demonstrates
that the time complexity of EMD5; is aroundO(N?), which is much faster than

the previous super-cubic algorithm.

¢ Diffusion Distance The diffusion distance models the difference between two
histograms as a temperature field and considers the diffusion process on the field.
Then, the integration of a norm on the diffusion field over time is used as a dissim-
ilarity measure between the histograms. For computational efficiency, a Gaussian
pyramid is used to discretize the continuous diffusion process. The diffusion dis-
tance is then defined as the sum of norms over all pyramid layers. The new distance
allows cross-bin comparison. This makes it robust to distortions such as deforma-
tion, lighting change and noise that often causes problems for HBLDs. Due to the
exponentially decreasing layer sizes in the Gaussian pyramid, the new approach
has a linear time complexity, which is much faster than previously used cross-bin

distances with quadratic complexity or higher.
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Second, for the first time, the cross-bin distances are successfully applied to com-
pare HBLDs and evaluated in comparison to other bin-to-bin distances. The speedup
gained by the two proposed approaches enables them to be applied directly to multi-
dimensional histograms without reducing the discriminability by introducing approxima-
tion. We tested the proposed approach in two tasks (shape matching and interest point
matching) with three different state-of-the-art HBLDs, shape context [15], SIFT [96], and
spin images [65, 80]. The experiments are conducted on both synthetic and real image
pairs, under significant geometrical deformation, lighting change, and intensity noise. In
all experiments, the proposed approaches performs excellently, as do other cross-bin dis-
tances, while running much faster.

The rest of this part is organized as follows. Sec. 5.1 discusses related works.
After that, Chapter 6 proposes two approaches for histogram comparison. In Section
6.1, we first review the original Earth Mover’s Distance and present its formulation for
histograms. Then we briefly introduce the proposed EMD-After that, Section 6.2
presents the proposed diffusion distance and discusses its relationship to EMD and previ-
ously proposed pyramid-based approaches. Section 6.3 describes experiments comparing
the diffusion distance to other methods (including EMB)-on shape matching and in-
terest point matching tasks. Section 6.4 concludes the chapter.

Part of this work appears in [94, 93, 92].
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5.1 Related Work

Dis/similarity measures between histograms can be categorized into bin-to-bin and cross-
bin distances. Our approach falls into the latter category. Early works using cross-bin
matching costs for histogram comparison can be found in [137], [156] and [116]. Partic-
ularly, in Peleg et al. [116], images are modeled as sets of pebbles after normalization.
The similarity between two images is the minimum cost required to move one set of
pebbles to match the other. Another cross-bin distance igjuladratic-form distance

[112, 53]. Quadratic-form distance is another cross-bin distance. It allows comparison of
histograms across different bin locations whose connectivity is heuristically determined
by a quadratic-form. An evaluation of different histogram dissimilarity measures for tex-
ture retrieval (color based) can be found in [126]. Recently, Domke and Aloimonos [35]
developed an approach to create deformation and viewpoint invariant color histograms.
The idea is to use unequal pixel weights that are extracted from gradients of different color
channels to cancel the changes induced by deformation. In the following, we discuss the
cross-bin distances that are most related to our study.

Adapted from previous work, the Earth Mover’s Distance (EMD) is proposed by
Rubner et al. [128] and Rubner and Tomasi [127] to compare distributions for image
retrieval tasks. By modelling distribution comparison as a transportation problem [57]
(a.k.a. the Monge-Kantorovich problem [122]), a specialized efficient linear program-
ming algorithm, thdransportation simpleXTS) algorithm [56] is proposed to solve the
EMD. Itis shown in [128] that TS has a super-cubic empirical time complexity. In [128],

EMD is applied to signatures of distributions instead of directly to histograms. Signa-
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tures are abstracted representations of distributions and are usually clustered versions
of histograms. This approach is very efficient and effective for distributions with sparse
structures, e.g., the color histograms in the CIE-Lab space [128]. However, for histogram-
based local descriptors that are not sparse in general, e.g. SIFT [96], EMD should be ap-
plied to histograms directly. In a typical setting to solve real vision problems, the number
of required comparisons between these descriptors is very large, which forbids the use of
the original TS algorithm. For example, to compare two images with 300 local features
each, 90,000 comparisons are needed! Note that, although there is a fast exact EMD al-
gorithm for 1D histograms [116], such a solution does not scale to higher dimensions -
while most of the histogram-based local descriptors have two or three dimensions.

Since it was initially proposed by Rubner et al. [128], EMD has attracted a large
amount of research interest. Here we briefly summarize some examples. Cohen and
Guibas [29] studied the problem of computing a transformation between distributions
with minimum EMD. Levina and Bickel [84] proved that EMD is equivalent to the Mal-
lows distance [98] when applied to probability distributions. Tan and Ngo [144] applied
EMD to common pattern discovery using EMD’s partial matching ability. In addition,
Indyk and Thaper [61] proposed a fast approximation EMD algorithm and it is used for
image retrieval [61] and shape matching [48]. Theformulation had been introduced
by Wesolowsky [157] and then Cohen and Guibas [29]. In this paper we extend it to
general multi-dimensional histograms. In addition, Holmes et al. [60, 59] touched on
several areas explored in the paper, including EMD approximations in a Euclidean space
for classes of derivative histograms and partial matching.

The fast algorithm proposed by Indyk and Thaper [61] is through embedding the
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EMD metric into a Euclidean space. The approach first embeds EMD between point sets
into aL, space. This is done via some hierarchical distribution analysis. Then fast nearest
neighbor retrieval is achieved via Locality-Sensitive Hashing (LSH). The EMD can then
be approximated by thé; distance in the Euclidean space. Grauman and Darrell [48]
extended this approach for fast contour matching. For this purpose, a shape is treated as
a set of features on the contours, where each feature is treated as a point in the feature
space. The time complexity of these algorithms@(é&/d log A), whereN is the number

of points,d is the dimension of the feature space, @i the diameter of the union of the

two feature sets to be compared. These approaches are very efficient for retrieval tasks
and global shape comparison [61, 48]. However, the approximation due to the embedding
may sacrifice precision, reducing the discriminability of descriptors. As indicated in [61],
the distortion upper bound 3(log A) and empirical distortion is about 10%. In addition,
these approaches focused on point set matching rather than the histogram comparison in
which we are interested. Recently, Grauman and Darrell [49] progmseadid matching

kernel (PMK) for feature set matching. PMK can be viewed as a further extension of
the fast EMD embedding in that it also compares the two distributions in a hierarchical
fashion. PMK also handles partial matching through histogram intersections [143]. PMK

is very similar to the proposed diffusion-based distance. The main differences lie in the
motivation and the application, as will be clarified in Chapter II.

Unlike the above previous work, we focus on designing a distance metric for the
histogram-based local descriptors, which have attracted a lot of research interest recently
[15, 110, 145, 147, 91, 96, 71, 111, 104]. Three representative examples are chosen in
our experiments. First, the shape context introduced by Belongie et al. [15] captures the
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distribution of landmark points. It is demonstrated to be very discriminative for shape
matching. Some extensions of the shape context can be found in [110, 145, 147, 91].
The second is the scale invariant feature transform (SIFT) proposed by Lowe [96], which
is a three-dimensional histogram measuring local gradient distributions. SIFT and its
extensions are widely used for image matching and retrieval, e.g. [96, 71, 111, 104]. The
third one is the spin image that basically computes the joint distribution of the intensity
and distance of pixels around given interest points. It was first proposed by Johnson and
Hebert [65] for 3D object recognition and later extended to a 2D texture descriptor by
Lazebnik et al. [80]. A review of other descriptors and their performance evaluation can
be found in [104]. Previously, these histogram-based local descriptors are compared by
bin-to-bin metrics, especially the? distance and thé, norms (e.g., Euclidean distance,
Manhattan distance). In this paper, we will show that the proposed EMD comparison
achieves better performance, especially for tasks involving large distortions including
geometric deformation, illumination change and heavy intensity noise.

Our work differs from the above works in several ways. First, we model the sim-
ilarity between histograms with a diffusion process. Second, we focus on comparing
histogram-based local descriptors such as shape context [15] and SIFT [96], while the
above works focus on feature distributions in the image domain. The difference between
the proposed approach and the pyramid matching kernel in [49] is studied in Sec. 6.2.

Previously, we proposed a fast EMD algorithm, EMDR{94], for histogram com-
parison. EMD4{,; utilizes the special structure of thg ground distance on histograms
for a fast implementation of EMD. Therefore it still solves the transportation problem,
which is fundamentally different from the motivation of this chapter. The diffusion dis-
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tance is much faster than EMDr and performs similarly in the case of large deforma-
tions. However, in a preliminary experiment with only small quantization errors, EMD-
performed better than the diffusion distance. More comprehensive comparisons between
them remains as an interesting future work.

The diffusion process has widely been used for the purpose of data smoothing and
scale-space analysis in the computer vision community. Some earlier work introducing
this idea can be found in [158, 74]. These works axiomatically demonstrated that a PDE
model of the linear heat dissipation or diffusion process has Gaussian convolution as a
unique solution. More recent well-known diffusion-based methods include anisotropic
diffusion for edge-preseving data smoothing [117] and automatic scale selection with
~v-normalized Laplacian [88]. It also provides a theoretical foundation to other vision
techniques such as Gaussian pyramids and the SIFT feature detector [96], anisotropic
bandwidth selection [113]. Despite its ubiquitousness, to the best of our knowledge, this
is the first attempt to exploit the diffusion process to compute a histogram distance. In
addition, Berg and Malik [16] used diffusion to alleviate shape deformation in template

matching.
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Chapter 6
Robust Histogram Comparison

6.1 EMD-L, for Histogram Comparison

6.1.1 The Original EMD between Signatures

The Earth Mover’s Distance (EMD) is proposed by Rubner et al. [128] to measure the
dissimilarity between signatures that are compact representations of distributions. A sig-
nature of sizeV is defined as a set = {s; = (w;, m;)}},, wherem; is the position of

the j-th element and; is its weight.

Given two signatures® = {(p;,u;)};2; and @ = {(g;,v;)}}—; with sizem,n
respectively, the EMD between them is modeled as a solution to a transportation problem.
Treat elements i as “supplies” located at; and elements i) as “demands” at;.
Thenp, andg; indicates the amount of supply and demand respectively. The EMD is

defined as the minimum (normalized) work required for resolving the supply-demand

transports, i.e.

EMD(P,Q) = min 2ig it
F={fi;} Ziﬂ‘fij

with the following constraints:
Zfij < Pi Zfij <qj, Zfij = min{ZPuZ%} , Jij =20,
j i irj i j
whereF' = {f;;} denotes a set dfows Each flowf;; represents the amount transported
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from thei-th supply to thej-th demand. We call;; the ground distanceébetween the

positionu; andwv;. Fig. 6.1 gives an example, whefehas four elements ar@ has three.

Figure 6.1: EMD between two signatures & 4, n = 3) as a transportation problem.

The transportation problem is a special case of linear programming (LP) problems.
The constraint matrix in this case has a very sparse structure that enables an efficient
algorithmic solution. One such efficient algorithm is the transportation simplex (TS) [128,
56]. Modified from the standard simplex algorithm, TS greatly reduces the number of
operations to maintain the constraint matrix by taking advantage of its special structure.
The empirical study in [128] shows that the time complexity is super-cubic for signatures
with size N. Other possible solutions mentioned in [128] include interior-point algorithms

[70] and incapacitated minimum network flow [9] that have similar time complexities.

6.1.2 The EMD between Histograms

Histograms can be viewed as a special type of signatures in that each histogram bin cor-

responds to an element in a signature. In this view, the histogram values are treated as
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the weightsw; in a signatureS, and the grid locations (indices of bins) are treated as
positionsm; in S.

In the following we assume two dimensional histograms for illustrative simplic-
ity. They are widely used for shape and image descriptors and derivations for higher
dimensional cases are straightforward. Without loss of generality, we use the following

assumptions and notations.
e Histograms haven rows andn columns andV = m x n bins.

e The index set for bins is defined @s= {(i,7) : 1<i<m, 1<j<n}. We use(i, j)

to denote a bin or a node corresponding to it.
e The index set for flows is defined &= {(i, j, k,{) : (¢,7) € Z, (k,l) € Z}.

o P ={p;:(i,7) € I} andQ = {q;; : (i,5) € Z} are the two histograms to be

compared.

e Histograms are normalized to a unit mass, D€,,; pi; = 1, >, ; ¢;; = 1. As will

be clear later, the normalization is not essential for the algorithm we will propose.

e The bin sizes in both dimensions are equal. Without loss of generality, each bin is

assumed to be a unit square.

With these notations and assumptions, we obtain the following new definition of
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EMD between two histogram8 and@

(£.Q) F:{fl-,j;k,l:(i,j,k,z)ej};f AL gikl (6.1)
(
>twper figei = pij V() €T
st Z(i,j)el’ fijer = qu Y(kI1) el (6.2)

fz',j;k,l Z 0 \V/(’L,],k,DEJ

\

whereF' is a flow from P to () and f; ;.. , denotes a flow from birti, j) to (k,[). Note

that we use the term “flow” to indicate both the set of flows in a graph and a single
flow between two nodes, when there is no confusion. A flowatisfying (6.2) is called
feasible

The ground distancé, ;... is commonly defined by., distance
dijoea = 1(5,5) " = (B, )TN, = (Ji = kP + | — 1]7)/7 (6.3)

For example, the original EMD proposed by Rubner et al. [128] employed.th(#or

texture) and., (for color) ground distances.

6.1.3 EMD4,

Despite its good performance, EMD is known to suffer from efficiency problems. The
transportation simplex algorithm has a super-cubic complexity. Recently, we proposed
a fast EMD algorithm, EMDE, [94], for histogram comparison. EMD- utilizes the
special structure of thé; ground distance on histograms for a fast implementation of
EMD. In this section we briefly introduce EMD+, details of related algorithms can be

found in [92].
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Formulation of EMD- L,

The robustness and efficiency of the norm often makes it preferable to tihg norm in
computer vision and related areas, such as low-level vision learning [44], stereo analysis
[66, 33], 1-norm support vector machine [167], etc. In addition /thandL, norms often
perform similarly for image retrieval tasks [11]. Inspired by this evidence, we chbpse

as EMD'’s ground distance. In the rest of the paper, unless indicated otherwide, the
ground distance is implicitly assumed when talking about EMD. With theground

distance, formula (6.3) becomes

dijkg =i — k| + 1[5 —

Note that the ground distance takes only integer values now. For illustrative purpose, the
flow index set7 is divided into three disjoint subsets = 7, | J1 J J2, each of which

corresponds to one of the following types of flows.

o Jo=1{(i4,i,7) : (i,5) € I} is for flows between bins at the same location. We

call this kind of flowsself-flowsor s-flowsfor short.

o T ={(t,4,k1): (i,4,k,1) € T,d; jr = 1} is for flows between neighbor bins.

We call this kind of flowan-flows

o Jo = {(i,j,k,1): (4,5,k,1) € T,d; x, > 1} is for other flows which are called

f-flowsbecause of theifiar distances.

An important property of thd.; ground distance is that every positive f-flow can

be replaced by a sequence of n-flows. This is becéys#istance forms a shortest path
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system on the integer lattice. For example, given an f-fipwy. ;, i<k, j <[, the L, ground

distance has the following decomposition

dijikes = dijig + dipk) = E diziz+1 + E dy liy+1,1 (6.4)

j<a<l i<y<k

In another words, any,; shortest path fron(, j) to (k, /) can be decomposed into a sum
of edges with ground distance one. It follows that, without changing the total weighted
flow ZfeF fd, the f-flow f; ;.. , can be removed by increasing all n-flows along the path

[(4,7), (6,7 +1),...,0,0), @+ 1,1),...,(k,1)] with f; ;. Thisis illustrated in Fig. 6.2

F it Sijrniitfijus
— — ——a

O="0—540 O——O——0

77 Sijimtfijni |
Sige idk, 1 Decompose Stk I‘I+fz',j;k,!

|

\ |

O O

Figure 6.2: Decompose an f-floyy ..;, K = i + 1,1 = j + 2. Only flows involved in

decomposition are shown.

In addition to f-flows, s-flows can also be removed due to the zero ground distances
associated with them while maintaining the total weighted flow. With these intuitions, we

proposeEMD-L: a new simplified formulation of EMD that only uses n-flows

EMD-Ly(P,Q) = i 6.5
{BQ) G{gi,j;kﬂrzlé%,k,oejl};g’““’l (65

ot Zk,l:(i,j,k,l)ejl (Gijiks — Gkpij) = by V(i,5) €T 66)
gigwr = 0 V(i j,k 1) €N
whereb;; = p;; — g;; is the difference between the two histograms at a bin (i,j). We call a

flow G satisfying (6.6) deasibleflow, analogous to that in the original EMD.
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EMD-L, is largely simplified compared to the original EMD (6.1) and (6.2). The

specific simplifications include

1. There are only NV variables in (6.5), one order of magnitude less than that in (6.1).
This is critical for speedup since the number of variables is a dominant factor in the
time complexity of all LP algorithms. In addition, the memory efficiency gained by

this is very favorable for large histograms.

2. The number of equality constraints is reduced by half. This is another important

factor for deriving an efficient LP algorithm.

3. All the ground distances involved in the EMD- become ones. This is practically
useful, because it removes all the distance computation and thus each igow
equivalent to the corresponding weighted flgiv It also allows the use of integer

operations to handle the coefficients.

One important property of EMDO-, is that it is equivalent to the original EMD with
a L, ground distance. The equivalence here is in the sense of the weighted total flows. For
example, a flow for EMD- L, and a flowF' in the original EMD is said to be equivalent
if Zjl Gijikd = 27 dijiifigikis 1-€., they have same total weighted flow. The following
proposition states the equivalence in which we are interested.

Proposition Given two histogram$” and(@ as defined above
EMD(P,Q) = EMD-L,(P,Q) . (6.7)

Intuitively, the discussion in previous paragraphs suggests that, for anyAlow
for the original EMD, an equivalent flowr for EMD-L; can be created by eliminat-
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ing all f-flows in F' by using the decomposition and removing s-flows. This implies
EMD(P,Q) > EMD-L,(P,Q). Now we need to verify the other direction. Given a
flow G for EMD-L4, find an equivalen#’ for the original EMD. The key issue is how

to satisfy the constraints (6.2) in the original EMD. To do this, we introduce a “merge”
procedure. The idea is to merge input and output flows at each bin so that either input or
output flows disappear as a result. Notice that, for this proof, we only neéttamave

a total weight not greater than that@f This makes the proof with the merge procedure
much simpler, allowing us to merge any pair of input and output flows. We left the details

of the proof in [92].

Network Flow Formulation of EMD- L; and A Fast Solution

EMD-L, can be interpreted as a network flow model illustrated in Fig. 6.3. In the model,
each bin(, j) is treated as a node with weighy, and eight flow edges (as shown in
Fig. 6.3) between the node and its four neighbors. The total weight of the nodes is O (i.e.
> 7bij = 0). The task is to redistribute the weights via the flows to make all weights
vanish. In this interpretation, EMID; is given by a solution with the minimum total
flow.

To compute EMD£; between histograms is equivalent to solving the linear pro-
gramming (LP) problem in (6.5) and (6.6). We designed a tree-based algorithm, Tree-
EMD, as an efficient discrete optimization solver, which extends the original simplex
algorithm. The tree-based algorithm is significantly faster than the original simplex, and
has a more intuitive interpretation as a network flow problem. As a reference, we will first

briefly describe the standard simplex applied to ENID-After that, an extended trans-
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(o) (o)1)

Figure 6.3: The EMDE;, as a network flow problem fa x 5 histograms.

portation simplex algorithm for EMD5, is designed based on the original transportation
simplex [56] used in [128]. Finally, the tree-based algorithm is derived by further extend-
ing the fast simplex.
In the following we will briefly describe the basic idea of Tree-EMD. First, EMD-

Ly is modeled as a minimum flow problem as illustrated above. The trick lies in that there
exists at least apanning tre€may not be unique) that achieves the minimum. Therefore,
given an initial (non-optimal) solution, it can be iteratively improved till the optimum is
reached. Derived from the transportation simplex algorithm, Tree-EMD is much faster
due to the efficiency provided by using a tree structure. The details of the algorithm,

including its relation to simplex, can be found in [92].

6.1.4 Empirical Study for Time Complexity

The simplex algorithm is known to have good empirical time complexity but poor worst

case time complexity. Therefore, to evaluate the time complexity of the proposed algo-
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rithm, we conduct an empirical study similar to thatin [128]. First, two sets of 2D random
histograms are generated for sizesx n, 2 < n < 20. For eachn, 1000 random his-
tograms are generated for each set (i.e. 2000 for all). Then, the two sets are paired and
the average time to compute EMD for each sizes recorded. We compare EMD;
(with Tree-EMD) and the original EMD (with TS algorithin In addition, EMD4; is
tested for 3D histograms with similar settings, except uging » < 8. In summary,
three algorithms are compared: EMD-L1 for 2D, EMD-L1 for 3D, and the original EMD.
The results are shown in Fig. 6.4. From (@) it is clear that EMDOs much faster than
the original one. Fig. 6.4 (b) shows that EMD)-has a complexity of)(N?), where

N is the number of binsr¢ for 2D andn? for 3D). Furthermore, in our image feature
matching experiments (Sec. 6.3.2), EMBR-shows similar running time as the quadratic

form distance (see Table 6.3), which has a quadratic time complexity.

5 107 average time vs number of bins x 10 average time vs square of number of bins
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Figure 6.4. Empirical time complexity study of EMD; (Tree-EMD). (a) In comparison
to the original EMD (TS Algorithm). (b) Average running time vs. square of histogram

sizes.

lwith Rubner’s code, http://ai.stanford.edutibner/emd/default.htm
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In addition to the above experiment, we also compared Tree-EMD and ETS in a
pilot experiments for 2D histograms with 80 bins. We observed that Tree-EMD is roughly
six times faster than the ETS algorithm.

By far EMD-L; has been shown to be more efficient than the original EMD. How-
ever, for sparse histograms, especially in high-dimensional spaces, the original EMD
might have an advantage as it uses signatures that can compactly represent the sparse

spaces with a relatively low number of features (bins).

6.2 The Diffusion Distance Between Histograms

6.2.1 Motivation

In last section EMDL; is proposed as a fast algorithm to compute the EMD with; a
ground distance. Note that the network flow formulation is actually not limited td.the
ground distance if we allow flows between all pairs of nodes. This implies, in general,
the EMD between histograms can be viewed as the minimum flow that makes the weights
vanish at all nodes. Naturally, a question is raised: is the minimum flow the best way to
measure histogram dissimilarity? Or, in other words, are there other effective or efficient
ways for weight exchanging?

Motivated by the questions above, we propose use the diffusion process to model
the weight exchanging and designed a simple while efficient solution. Intuitively, instead
of using the minimum flow, we can exchange weights greedily to make all weights vanish.
It can be iteratively done until convergence. This procedure follows a diffusion process.

Given two histogramsé,, h, and their differenced = h; — h,, d can be treated as initial
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temperatures of a temperature fidld Then, without any external heat exchangifig,
diffuses according to time. The diffusion process naturally redistribute the weights so
that every weight vanishe$'(— 0) in the limit.

The rest of this section is organized as follows. Section 6.2.2 presents the diffusion
model for histogram differences. Then, Section 6.2.3 discusses the relationship between
the proposed distance and the EMD. After that, Section 6.2.4 proposed a pyramid-based
approximation of the proposed distance measure. Then, Section 6.2.5 describes the dif-

ference between our approach to the pyramid matching kernel [49].

6.2.2 Modelling Histogram Difference with a Diffusion Process

Let us first consider 1D distributiors, (z) andhs(x). It is natural to compare them by
their difference, denoted @§z) = hi(x)—hs(x). Instead of putting a metric ahdirectly,
we treat it as an isolated temperature fi€ld:, ¢) at timet = 0, i.e. T'(z,0) = d(z). Itis

well known that the temperature in an isolated field obeys the heat diffusion equation

or  o°T
= 5t (6.8)
It has a unique solution
T(a,t) = To(x) * ¢, 1) (6.9)
given initial conditionT} ()
T(x,0) =To(x) = d(x) (6.10)
whereg(z,t) is the Gaussian filter
1 x?
¢(z,t) = WGXP{_E} (6.11)
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Note that the mean of the difference field is zero, therefofre, t) becomes zero
everywhere when increases. In this sensé(z,¢) can be viewed as a process of his-
togram value exchange which makiesand h, equivalent. Intuitively, the proceshf-
fuseghe difference between two histograms, therefore a dissimilarity can be extracted by

measuring the process. A distance betwkeeandh, is defined as
N i
Rihuihs) = [ KT, 1)de (6.12)
0

wheret is a positive constant upper bound of the integration, which camokes long
as the integration convergeg.) is a norm that measures hdii(x, ¢t) differs from 0.
In this chapter, we use the; norm because of its computational simplicity and good
performance in our pilot studies.
Next we will show howk™ handles deformation with a simple 1D example.
Assume a simple case whelig(z) = 0(x) andhy(z) = 6(x — A), as shown in
Fig. 6.5 (a) and (b). This means the histogram is shifted\by 0. The initial value of
T(x,t) is thereforely = §(z) — 6(x — A), as shown in Fig. 6.5 (c). The diffusion process

becomes

T(x,t) = (0(x) = d0(x = A)) * d(,1)

= ¢(z,t) — p(x — A1) (6.13)
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Use theL; norm fork(.),

K@) = [ Jotet) — 6o~ plda

[e.9]

AJ2
- g/ 16z, 1) — d(a — A, 1))de

o0

AJ2 —A/2
= 2 ( : ¢(x, t)dx —/_ (b(x,t)dx)

[e.e] e e}

A2

= 2(2 ¢z, t)dr — 1 (6.14)
From (6.12) and (6.14), it is clear that.) and K are monotonically increasing

with A. This suggests thak’ indeed measures the degree of deformation between two

histograms.

= N 0(x)-6(x-A)

0 (X) 0(x-A) t A
I T —

(@) (b) ()

Figure 6.5: Two histograms with shiff between them and their difference. (a) (b)

ho. (C)d = hy — ho.

6.2.3 Relation to the Earth Mover’s Distance

From the above discussion, it is clear tiatis a cross-bin distance, which allows com-
parison between bins at different locations. In this subsection we will discuss its relation
with EMD [128], which is another effective cross-bin histogram distance.

Given two histogram#; andh,, EMD modelsh, as a set of supplies arig as a

set of demands. The minimumork to transport all supplies to demands is used as the
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distance between; andh,. In other word, EMD measures the dissimilarity between
histograms with a transportation problem [128].

Note that bins ofi; andh, share same lattice locations, which means that it takes
zero work to transport supplies from a bin/n to the same bin irh,. This leads to an
intuitive interpretation of EMD with the differencé = h; — hy: EMD is the minimum
work of exchanging values itito maked vanish everywhere.

This provides an intuition about the difference between EMD BncEMD seeks
the exchanging scheme which has the minimum work, wiiimeasures a more “natural”
exchanging scheme, i.e. diffusion process. While EMD has been successfully applied to
several vision tasks (e.g. [128, 48]), the diffusion-based distances have not been evalu-
ated with any vision tasks. Our conjecture is that they may fit to different tasks. In our
experiments (see Sec. 6.3) on the HBLDs suffering large deformation, both approaches
perform quite similarly. Below we demonstrate an example, in Wlﬂ?’cperforms better
than EMD.

Consider three one-dimensional histogrdmsh, andh; as illustrated in the left of
Fig. 6.6.h, is shifted fromh, by A, while h3 can not be linearly transformed frolm. We
want to comparé,; to h, andhs. Subtractingh, andhs from hy, we get the differences
dy2, dq3 @s shown in the right of Fig. 6.6. It is clear that the EMD betwkeandh, are
the same as the EMD betweén and hs. Perceptually, howevel,; seems to be more
similar to hy than tohs.

Fig. 6.7 shows the diffusion proce$%z,t) att = 0,6,12. From the figure we
see that:(|T'(x,t)|) for hy andh, is always smaller than that fér, andh;. Therefore,

K (h1, hs) < K (hy, hs). This is more consistent with our perception.
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Figure 6.6: Left: Three 1D histograms. Right: The differences between them.
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Figure 6.7: The diffusion process of the differente (left column) andd,3 (right col-
umn). Each row shows the diffusion result at a different ttmi(|7’|) is measured using
the L, norm; the values show thdt, decays faster thadh ;.

6.2.4 Diffusion Distance

It is straightforward to extend previous discussions to higher dimensions. Consider two

m-dimensional histograms, (x) anth(xi,Zvlvherex € R™ is a vector. The definition of



IA((hl, hs) is the same as in Sec. 6.2.2, except that equations (6.8) and (6.11) are replaced

by (6.15) and (6.16), respectively.

or

5 = V2T (6.15)
d(x,t) = Wexp{—%} (6.16)

Now the problem is how to computﬁf. Direct computation of equation (6.14)
is expensive. Instead, we use an alternative distance function based on the Gaussian
pyramid. The Gaussian pyramid is a natural and efficient discritization of the continuous
diffusion proces¥’(x,t). It is justified because smoothing allows subsampling without

aliasing. With this idea, we propose tt#fusion distance< (h, h2) as

K(hy, hy) = ik (|d;(x (6.17)
=0
where
do(x) = hi(x) — ha(x) (6.18)
di(x) = [d1(x)*¢(x,0)] |2 1=1,...,L (6.19)

are different layers of the pyramid. The notatign™denotes half size downsampling.
is the number of pyramid layers ands the constant standard deviation for the Gaussian
filter ¢.

Note that as long a&(.) is a metric,K'(hy, he) forms a metric on histograms. In

particular, in this chapter we choog€.) as theL; norm, which makes the diffusion

distance a true metric. Equation (6.17) is then simplified as

K (h, hy) = Z e (6.20)
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The computational complexity oK (hy, hy) is O(N), whereN is the number of
hitogram bins. This can be easily derived by two facts. First, the sizee{ponentially
reduces. Second, only a small Gaussian filté&s required which makes the convolution

take time linear in the size of; for each scalé.

6.2.5 Relation to the Pyramid Matching Kernel

The diffusion distance (6.20) is similar to the pyramid matching kernel (PMK) recently
proposed by Grauman and Darrell [49] in that both methods compare histograms by sum-
ming the distances over all pyramid layers.

As mentioned in the related work section, our approach focuses on histogram-based
local descriptors, while PMK focuses on feature set matching. The two methods have the
following differences.

First, when comparing each pyramid layer, PMK counts the number of newly
matched feature pairs via the difference of histogram intersection [143]. This is par-
ticularly effective for handling occlusions for feature set matching. However, this is not
an effective strategy for HBLDs because they are usually normalized. In contrast, we
employ theL; norm to compare each pyramid layer.

Second, PMK uses varying weights for different scales by emphasizing finer scales
more. This is reasonable for feature set matching as mentioned in [49]. However in the
diffusion distance, uniform weights are used - this seems more natural and performs better
than non-uniform weights in our preliminary experiments.

Third, the diffusion distance uses Gaussian smoothing before downsampling ac-

cording to the underlying diffusion process.
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Fourth, PMK requires random shifting when extracting histograms from feature sets
to alleviate quantization effects. The proposed method avoids such a strategy by using the

intuitive cross-bin referencing imposed by the diffusion.

6.3 Experiments

In this section the diffusion distance is tested for two kinds of vision tasks using HBLDs.
The first experiment is for shape features, where the diffusion distance is used to compare
shape context [15] in a data set with articulated objects. The second experiment is for
interest point matching on a data set with synthetic deformation, illumination change
and heavy noise. Both experiments demonstrate that the proposed method is robust for

guantization problems.

6.3.1 Shape Matching with Shape Context

This subsection compares the diffusion distance for shape matching with shape context
(SC) [15] and the inner-distance shape context (IDSC) [91]. Shape context is a shape
descriptor that captures the spatial distribution of landmark points around every interest
key point [15]. IDSC is an extension of SC using the shortest path distance instead of
Euclidean distance. In [91], SC and IDSC are used for contour comparison with a dy-
namic programming (DP) scheme. We use the same framework, except for replacing the
x? distance with the diffusion distance and EMD (with Rubner’s épdier measuring
dissimilarity between (inner-distance) shape contexts.

The experiment is conducted on an articulated shape database tested in [91]. The

2http://ai.stanford.edw/rubner/emd/default.htm
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Figure 6.8: Articulated shape database. This dataset contains 40 images from 8 objects.

Each column contains five images from the same object with different articulation.

database contains 40 images from 8 different objects. Each object has 5 images articulated
to different degrees (see Figure 6.8). This data set is designed for testing articulation,
which is a special and important case of deformation. [91] shows that the original shape
context with x? distance does not work well for these shapes. The reason is that the
articulation causes a large deformation in the histogram.

We use exactly the same experimental setup as used in [91]: 200 points are sampled
along the outer contours of every shape; 5 log-distance bins and 12 orientation bins are
used for shape context histograms. The same dynamic programming matchings are used
to compute distances between pairs of shapes. The recognition result is evaluated as
following: For each image, the 4 most similar matches are chosen from other images in
the dataset. The retrieval result is summarized as the number of 1st, 2nd, 3rd and 4th most
similar matches that come from the correct object. Table 6.1 shows the retrieval results
using the shape context. It demonstrates that the diffusion distance works much better
than they? distance.

Table 6.2 shows the results for inner-distance shape context. In this case, though the
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Table 6.1: Retrieval result on the articulated dataset with shape context [15]. The running
time (in seconds) of using® was not reported in [91].

Distance | Topl| Top 2| Top 3| Top 4| Time
2 [91] 20/40| 10/40| 11/40| 5/40 | N/A
EMD [128] | 37/40| 33/40| 24/40| 16/40| 1355s
Diffu. Dist. | 34/40| 27/40| 19/40| 14/40| 67s

Table 6.2: Retrieval result on the articulated dataset with the inner-distance shape context
[91]. The running time (in seconds) of using was not reported in [91].

Distance | Top1l| Top 2| Top 3| Top 4| Time
x>[91] | 40/40| 34/40| 35/40| 27/40| N/A
EMD [128] | 39/40| 38/40| 26/40| 28/40| 1143s
Diffu. Dist. | 40/40| 36/40 | 37/40| 23/40| 68s

inner-distance is already insensitive to articulation, the diffusion distance still improves
the result. From the tables we also see that the diffusion distance works similarly to EMD,

while being more efficient.

6.3.2 Image Feature Matching

This subsection describes the experiment for interest point matching with several state-
of-the-art image descriptors. The experiment was conducted on two image data sets. The
first data set contains ten image pairs with synthetic deformation, noise and illumina-
tion change, see Fig. 6.9 for some examples. The second one contains six image pairs
with real deformation and lighting changes, some of them are shown in Fig. 6The
experimental configuration and results are described below.

Dissimilarity measures. We tested the diffusion distance along with several popular

bin-to-bin distances, as well as cross-bin distances. The bin-to-bin distances include

3Two pairs of images with large lighting change are not shown here due to copyright issues. They are

available at http://www.cs.umd.edu/ hbling/Research/Publication/data/RD-cvpr06.zip.
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Figure 6.9: Synthetic image pairs with synthetic deformation, illumination change and

noise.

Figure 6.10: Four of the six image pairs containing real deformation and lighting change.

the x? statistics, the symmetric Kullback-Leibler divergence (KL), symmetric Jensen-

Shannon(JS) divergence [87]; distance and Bhattacharyya distance (BT). Cross-bin
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distances include EMD, EMD~ and quadratic-form(QF). For EMD, we use Rubner’s
online code withl, ground distance. The quadratic-form distance is implemented accord-
ing to [128]. For the diffusion distance, we set the Gaussian standard dewiatiof.5

and use a window of siz&x 3 (3 x 3 x 3 for 3D histograms). We did not compare with
PMK [49] because it requires random shifting when building a initial histogram (zero-th
layer) and it uses the intersection focusing on un-normalized histograms extracted from
feature sets.

Interest point. We use Harris corners [55] for the matching experiments. The reason
for this choice is that, due to the large deformation, noise and lighting change, it is hard
to apply other interest point detectors. On the other hand, we focus more on comparing
descriptors than the interest points. For the synthetic data set, we pick 200 points per
image pair with the largest cornerness responses. To compute the descriptors, a circular
support region around each interest point is used. The region diameter is 41 pixels, which
is similar to the setting used in [104]).

Descriptors. We tested all the distances on three different histogram-based descriptors.
The first one is SIFT proposed by [96]. It is a weighted three-dimensional histogram, 4
bins for each spatial dimensions and 8 bins for gradient orientation. The second one is
the shape context [15]. The shape context for images is extracted as a two-dimensional
histogram counting the local edge distribution in a similar way to [104]. In our experi-
ment, we use 8 bins for distance and 16 bins for orientation. The third one is the spin
image [80, 65] which measures the joint spatial and intensity distribution of pixels around
interest points. We use 8 distance bins and 16 intensity bins.

Evaluation criterion. For each pair of images with their interest points, we first find
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the ground-truth correspondence. This is done automatically for the synthetic data set
and manually for the real image pairs. Then, for efficiency we removed those points
in Image 1 with no correct matches (this also makes the maximum detection rate to 1).
After that, every interest point in Image 1 is compared with all interest points in Image 2
by comparing the SIFT extracted on them. The detection rate among thé togtches

is used to study the performance. The detectionradadefined similarly to [104] as

# correct matches
r= -
# possible matches

(6.21)

Experiment results. For evaluation, a performance curve for each distance measure is
plotted showing the detection rates versviswhich is the number of the most similar
matches allowed. The curves on the synthetic and real image pairs are shown in Fig. 6.11.
In addition, the running time of each method is recorded. The average running time over
real image pairs is summarized in Table 6.3. From these results, we see that the cross-bin
distances work better than bin-to-bin distances. EMD, EMIand the diffusion distance
perform consistently better than the quadratic-form distance. For efficiency, it is clear that
the diffusion distance is much faster than all three other cross-bin distances - this is due

to its linear computational complexity.

6.4 Conclusion and Future Work

We model the difference between two histograms as an isolated temperature field. There-
fore the difference can be studied with a diffusion process. Combining this idea and the
connection between a diffusion process and the Gaussian pyramid, we proposed a new
distance between histograms, diffusion distance. We show that the diffusion distance is
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Figure 6.11: ROC curves for interest point matching experiments. Left column is for
synthetic image pairs and right for real image pairs. First row is for experiments with

SIFT [96], second row for shape context [15], and third row for spin image [80, 65]
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Table 6.3: Average time (in seconds) for interest point matching between a real image
pair. SC is short for shape context and Sl for spin image.

Approach | SIFT [96] | SC [15] | SI [80, 65]
% 0.055 | 0.047 | 0.042
Ly 0.007 | 0.009 0.01
KL 0.161 | 0.229 0.2
JS 0.317 | 0.284 | 0.299
BT 0.044 | 0.034 | 0.047
QF 3.622 | 3.625 | 3.675

EMD(L,) | 603.955 | 418.419] 468.955

EMD-L, | 6.041 | 3.693 3.74

Diffu. Dist. | 0.909 | 0.117 | 0.112

robust for comparing histogram-based local descriptors since it alleviates deformation
problems as well as quantization effects that often occur in real vision problems. In the
experiments on both shape features and image features, the proposed approach demon-
strates very promising performance in both accuracy and efficiency in comparison with
other state-of-the-art histogram distances.

We are interested in deepening our understanding of how the diffusion process mod-
els the histogram difference, including further theoretical analysis of the deformation
problem and the relationship between the diffusion process and other cross-bin distances,
especially the Earth Mover’s Distance. We are also interested in applying the proposed

approach to other histogram comparison problems aside from local descriptors.
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Part Il

Automatic Thumbnail Cropping and Its Effectiveness
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Chapter 7

Automatic Thumbnail Cropping and Its Effectiveness

1

7.1 Introduction

Thumbnail images are now a widely used technique for visualizing large numbers of im-
ages given limited screen real estate. QRIC system developed by Flickner et al. [41]

is a notable image database example. A zoomable image brdWsegMesd14], lays

out thumbnails in a zoomable space and lets users move through the space of images with
a simple set of navigation function®hotoFinderapplied thumbnails as a visualization
method for personal photo collections [69]. Popular commercial products such as Adobe
Photoshop Album [2] and ACDSee [1] also use thumbnails to represent images files in
their interfaces. In addition to image thumbnasimmary thumbnaj¥6]is proposed for

web pages to improve web browsing on small screens.

Current systems generate thumbnails by shrinking the original image. This method
is simple. However, thumbnails generated this way can be difficult to recognize, espe-
cially when the thumbnails are very small. This phenomenon is not unexpected, since
shrinking an image causes detailed information to be lost. An intuitive solution is to keep

the more informative part of the image and cut less informative regions before shrinking.

IPart of this work is jointly done with Bongwon Suh supervised by Professor Ben B. Bederson.
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Some commercial products allow users to manually crop and shrink images [6]. Burton
et al. [23] proposed and compared several image simplification methods to enhance the
full-size images before subsampling. They chose edge-detecting smoothing, lossy image
compression, and self-organizing feature map as three different techniques in their work.

In quite a different context, DeCarlo and Santella [34] tracked a user’s eye move-
ments to determine interesting portions of images, and generated non-photorealistic, painterly
images that enhanced the most salient parts of the image. Chen et al. [26] use a visual
attention model as a cue to conduct image adaptation for small displays.

In this part, we study the effectiveness of saliency based cropping methods for pre-
serving the recognizability of important objects in thumbnails. Our first method is a
general cropping method based on the saliency map of Itti and Koch based on a model
of human visual attention [63, 62]. A saliency map of a given image describes the im-
portance of each position in the image. In our method, we use the saliency map directly
as an indication of how much information each position in images contains. The merit
of this method is that the saliency map is built up from low-level features only, so it
can be applied to general images. We then select the portion of the image of maximal
informativeness.

Although this saliency based method is useful, it does not consider semantic infor-
mation in images. We show that semantic information can be used to further improve
thumbnail cropping, using automatic face detection. We choose this domain because a
great many pictures of interest show human faces, and also because face detection meth-
ods have begun to achieve high accuracy and efficiency [161, 164].

In this part we describe saliency based cropping and face detection based cropping
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after first discussing related work from the field of visual attention. We then explain the
design of a user study that evaluates the thumbnail methods. This part concludes with a
discussion of our findings and future work.

Part of this work appears in [142].

7.2 Related Work

Visual attention is the ability of biological visual systems to detect interesting parts of the
visual input [63, 62, 106, 105]. The saliency map of an image describes the degree of
saliency of each position in the image. The saliency map is a matrix corresponding to the
input image that describes the degree of saliency of each position in the input image. Itti
and Koch [63, 62] provided an approach to compute a saliency map for images. Their
method first uses pyramid technology to compute three feature maps for three low level
features: color, intensity, and orientation. For each feature, saliency is detected when a
portion of an image differs in that feature from neighboring regions. Then these feature
maps are combined together to form a single saliency map. After this, in a series of
iterations, salient pixels suppress the saliency of their neighbors, to concentrate saliency
in a few key points.

Chen et al. [26] proposed using semantic models together with the saliency model
of Itti and Koch to identify important portions of an image, prior to cropping. Their
method is based on the attention model, which uses attention objects as the basic elements.
The attention value of each attention object is calculated by combining attention value

from different models. For semantic attention models they use a face detection technique
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[86] and a text detection technique [27] to compute two different models. The method
provides a way to combine semantic information with low-level features. However, when
combining the different values, their method uses a heuristic weight that is different for
five different predefined image types. Images need to be manually categorized into the
five categories prior to applying their method. Furthermore, it heavily relies on semantic
extraction techniques. When the corresponding semantic technique is not available or
when the technique failed to provide good result (e.g. no face found in the image), it is
hard to expect a good result from the method.

There are some recent work on combining the saliency with visualization/browsing
tasks. Xie et al. [160] proposed improving the browsing interface by learning user interest
from their previous activity. Lee et al. [81] applied the saliency to 3D mesh visualization.
Wang et al. [154] presented a perceptual scale space technique for adaptive image display-
ing. Rother et al. [125] presented a saliency-based technique to smartly merge multiple
images (by their parts) into a single one. Khella and Bederson [72] design&btket

PhotoMesdo facilitate image browsing on pocket screens.

7.3  Thumbnail Cropping

7.3.1 Problem Definition

We define the thumbnail cropping problem as follows: Given an imiggée goal of
thumbnail cropping is to find a rectanglé-, containing a subset of the imade so
that the main objects in the image are visible in the subimage. We then dhrittka

thumbnail. In the rest of this chapter, we use the word “cropping” to indicate thumbnail
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cropping.
In the next subsection, we propose a general cropping method, which is based on

the saliency map and can be applied to general images. Next, a face detection based

cropping method is introduced for images with faces.

7.3.2 A General Cropping Method Based on the Saliency Map

In this method, we use the saliency value to evaluate the degree of informativeness of
different positions in the imagé. The cropping rectangl&. should satisfy two condi-
tions: having a small size and containing most of the salient parts of the image. These two
conditions generally conflict with each other. Our goal is to find the optimal rectangle to
balance these two conditions.

Compute Saliency Map

We use Itti and Koch’s saliency algorithm [62] because their method is based on
low-level features and hence independent of semantic information in images. We choose
Itti and Koch’s model also because it is one of the most practical algorithms on real
images.

The direct implementation of Itti and Koch’s approach is time consuming. First,
the algorithm to compute the saliency map involves several series of iterations. Some
of the iterations (especially for surround inhibition) involve convolutions using very large
filter templates (on the order of the size of the saliency map). These convolutions make the
computation very time consuming. Instead, we use an approximated algorithm to simplify
the computation with 1) using fewer iterations and smaller filter templates during the

saliency map calculation; 2) squaring the saliency to enhance it. Experiments show that
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the approximated algorithm makes no distinguishable difference for thumbnail cropping,
while the speed is much faster. Figure 7.1 shows the framework of the algorithm adapted
from [62].

An example saliency map is given in Figure 7.2.
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Figure 7.1: Simplified saliency computation. Adapted from [62].

Figure 7.2: Left: original image, right: saliency map of the image shown left.
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Find Cropping Rectangle with Fixed Threshold using Brute Force Algorithm

Once the saliency ma§; is ready, our goal is to find the crop rectandle that
is expected to contain the most informative part of the image. Since the saliency map is
used as the criteria of importance, the sum of saliency withirshould contain most of
the saliency value ir%;. Based on this idea, we can firk, as the smallest rectangle
containing a fixed fraction of saliency. To illustrate this formally, we define candidates

setR(\) for R¢ and the fraction threshold as

Z( )e S[(x,y)
R=<r: == > A (7.1)
{ z(x,y) SI (SL’, y)
Then R is given by
Rc = argmin. .z, {aredr) } (7.2)

Rc denotes the minimum rectangle that satisfies the threshold defined above. A
brute force algorithm was developed to compite A brute force algorithm was devel-
oped to computéis.

Find Cropping Rectangle with Fixed Threshold using Greedy Algorithm

The brute force method works, however, it is not time efficient since the brute force
algorithm basically searches all sub-rectangles exhaustively. To solve this problem, we
propose using a greedy search instead of brute force method by only considering rectan-
gles that include the peaks of the saliency.

Algorithm 3 shows the algorithm GREEDY-CROPPING to find the cropping rec-
tangle with fixed saliency threshol The greedy algorithm calculatég, by incremen-
tally including the next most salient peak poiit Also when including a salient poirft
in B¢, we unionR- with a small rectangle centered &t This is because iP is within
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Algorithm 3 GREEDY-CROPPING £, A\). Algorithm to find cropping rectangle with

fixed saliency thresholds is the input saliency map andis the threshold.
thresholdSum— \ x Total saliency value i

R < the center ofS
currentSaliencySum- saliency value ofzo
while currentSaliencySuma thresholdSumdo

P «— Maximum saliency point outsidg

R’ — Small rectangle centered at P

Re «— UNION(R¢, R')

Update currentSaliencySum with new regiBp
end while

return Rq

the foreground object, it is expected that a small region surrounfdiwguld also contain
the object.

This algorithm can be modified to satisfy further requirements. For example, the
UNION function in Algorithm 3 can be altered when the cropped rectangle should have
the same aspect ratio as the original image. Rather than just merging two rectangles,
UNION needs to calculate the minimum surrounding bounds that have the same aspect
ratio as the original image. As another example, the initial valu&@fcan be set to
either the center of imagé, or the most salient point or any other point. Since the initial
point always falls in the result thumbnail, it can be regarded as a point with extremely
large saliency. When the most salient point is selected as an initial point, the result can be

optimized to have the minimum size. But, we found that to begin the algorithm with the
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center of images gives more robust and faster results even though it might increase the
size of the result thumbnail especially when all salient points are skewed to one side of
an image.

Find Cropping Rectangle with Dynamic Threshold

Experience shows that the most effective threshold varies from image to image. We
therefore have developed a method for adaptively determining the threshold

Intuitively, we want to choose a threshold at a point of diminishing returns, where
adding small amounts of additional saliency requires a large increase in the rectangle. We
use an area-threshold graph to visualize this. Xhaxis indicates the threshold (fraction
of saliency) while th&” axis shows the normalized area of the cropping rectangle as the
result of the greedy algorithm mentioned above. Here the normalized area has a value
between 0 and 1. The solid curve in Figure 7.3 gives an example of an area-threshold
graph.

A natural solution is to use the threshold with maximum gradient in the area-
threshold graph. We approximate this using a binary search method to find the threshold
in three steps: First, we calculate the area-threshold graph for the given image. Second,
we use a binary search method to find the threshold where the graph goes up quickly.
Third, the threshold is tuned back to the position where a local maximum gradient exists.
The dotted lines in Figure 7.3 demonstrate the process of finding the threshold for the
image given in Figure 7.2.

Examples of Saliency Map Based Cropping

After getting R, we can directly crop the input imade Thumbnails of the image

given in Figure 7.2 are shown in Figure 7.4. It is clear from Figure 7.4 that the cropped
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Figure 7.3: The solid line represents the area-threshold graph. The dotted lines show
the process of searching for the best threshold. The numbers indicate the sequence of

searching.

thumbnail can be more easily recognized than the thumbnail without cropping.
Figure 5 shows the result of an image whose salient parts are more scattered. Photos
focusing primarily on the subject and without much background information often have

this property. A merit of our algorithm is that it is not sensitive to this.

7.3.3 Face Detection Based Cropping

In the above section, we proposed a general method for thumbnail cropping. The method
relies only on low-level features. However, if our goal is to make the objects of interest

in an image more recognizable, we can clearly do this more effectively when we are able
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Figure 7.4: (left): the image cropped based on the saliency map; (middle): the cropping
rectangle which contains most of the saliency parts; (right top): a thumbnail subsampled

from the original image; (right bottom): a thumbnail subsampled from the cropped image

(left part of this figure).

Figure 7.5: (left top): the original image (courtesy of Corbis [3]); (right top): the saliency
map; (left bottom): the cropped image; (right bottom): the cropped saliency map which

contains most of the salienct parts.

to automatically detect the position of these objects.
Images of people are essential in a lot of research and application areas. Atthe same

time, face processing is a rapidly expanding area and has attracted a lot of research effort
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in recent years. Face detection is one of the most important problems in the area. Surveys
the numerous methods proposed for face detection can be found in [161] and [164].

For human image thumbnails, we claim that recognizability will increase if we crop
the image to contain only the face region. Based on this claim, we designed a thumbnail
cropping approach based on face detection. First, we identify faces by applying CMU’s
on-line face detection [5, 131] to the given images. Then, the cropping rectBagke
computed as containing all the detected faces. After that, the thumbnail is generated from

the image cropped from the original image By

Figure 7.6: (left): the original image; (middle): the face detection result from CMU’s

online face detection [9]; (right): the cropped image based on the face detection result.

Figure 7.6 shows an example image, its face detection result and the cropped im-
age. Figure?? shows the three thumbnails generated via three different methods. In this
example, we can see that face detection based cropping method is a very effective way
to create thumbnails, while saliency based cropping produces little improvement because

the original image has few non-salient regions to cut.
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Figure 7.7: Thumbnails generated by the three different methods. (left): without crop-

ping; (middle): saliency based cropping; (right): face detection based cropping.

7.4 User Study

We ran a controlled empirical study to examine the effect of different thumbnail gener-
ation methods on the ability of users to recognize objects in images. The experiment is
divided into two parts. First, we measured how recognition rates change depending on
thumbnail size and thumbnail generation techniques. Participants were asked to recognize
objects in small thumbnails (Recognition Task). Second, we measured how the thumbnail
generation technique affects search performance (Visual Search Task). Participants were

asked to find images that match given descriptions.

7.4.1 Design of Study

The recognition tasks were designed to measure the successful recognition rate of thumb-
nail images as three conditions varied: image set, thumbnail technique, and thumbnail
size. We measured the correctness as a dependent variable.

The visual search task conditions were designed to measure the effectiveness of
image search with thumbnails generated with different techniques. The experiment em-
ployed a 3x3 within-subjects factorial design, with image set and thumbnail technique as

independent variables. We measured search time as a dependant variable. But, since the
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face-detection clipping is not applicable to the Animal Set and the Corbis Set, we omitted
the visual search tasks with those conditions as in Table 7.1. The total duration of the

experiment for each participant was about 45 minutes.

Table 7.1: Visual search task design. Checkmarksshow which image sets were tested
with which image cropping techniques.

Thumbnail Technique Animal Set| Corbis Set| Face Set
Plain shrunken thumbnail v v v
Saliency based cropping v v v

Face detection based cropping X X v

7.4.2 Participants

There were 20 participants in this study. Participants were college or graduate students
at the University of Maryland at College Park recruited on the campus. All participants
were familiar with computers. Before the tasks began, all participants were asked to
pick ten familiar persons out of fifteen candidates. Two participants had difficulty with
choosing them. Since the participants must recognize the people whose images are used

for identification, the results from those two participants were excluded from the analysis.

7.4.3 Image Sets

We used three image sets for the experiment. We also used filler images as distracters
to minimize the duplicate exposure of images in the visual search tasks. There were 500
filler images and images were randomly chosen from this set as needed. These images
were carefully chosen so that none of them were similar to images in the three test image
sets.

Animal Set (AS) The "Animal Set” includes images of ten different animals and there
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are five images per animal. All images were gathered from various sources on the Web.
The reason we chose animals as target images was to test recognition and visual search
performance with familiar objects. The basic criteria of choosing animals were 1) that
the animals should be very familiar so that participants can recognize them without prior
learning; and 2) they should be easily distinguishable from each other. As an example,
donkeys and horses are too similar to each other. To prevent confusion, we only used
horses.
Corbis Set (CS)Corbis is a well known source for digital images and provides various
types of tailored digital photos [3]. Its images are professionally taken and manually
cropped. The goal of this set is to represent images already in the best possible shape. We
randomly selected 100 images out of 10,000 images. We used only 10 images as search
targets for visual search tasks to reduce the experimental errors. But during the experi-
ment, we found that one task was problematic because there were very similar images in
the fillers and sometimes participants picked unintended images as an answer. Therefore
we discarded the result from the task. A total of five observations were discarded due to
this condition.
Face Set (FS) This set includes images of fifteen well known people who are either
politicians or entertainers. Five images per person were used for this experiment. All
images were gathered from the Web. We used this set to test the effectiveness of face
detection based cropping technique and to see how the participants’ recognition rate varies
with different types of images.

Some images in this set contained more than one face. In this case, we cropped
the image so that the resulting image contains all the faces in the original image. Out
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of 75 images, multiple faces were detected in 25 images. We found that 13 of them
contained erratic detections. All erroneously detected faces were included in the cropped
thumbnail sets since we intended to test our cropping method with available face detection

techniques, which are not perfect.

7.4.4 Thumbnail Techniques

Plain shrinking without cropping The images were scaled down to smaller dimensions.
We prepared ten levels of thumbnails from 32 to 68 pixels in the larger dimension. The
thumbnail size was increased by four pixels per level. But, for the Face Set images,
we increased the number of levels to twelve because we found that some faces are not

identifiable even in a 68 pixel thumbnail.

Table 7.2: Ratio of cropped to original image size.
Cropping Technique and Image SeRatio | Variance
Saliency based cropping (CS) | 61.3%| 0.110
Saliency based cropping (AS) | 53.9% | 0.127
Saliency based cropping (FS) | 54.3%| 0.128
Saliency based cropping (CS) | 57.6%| 0.124

Face detection based cropping (F)6.1%| 0.120

Saliency based cropping By using the saliency based cropping algorithms described
above, we cropped out background of the images. Then we shrunk cropped images to ten
sizes of thumbnails. Table 7.2 shows how much area was cropped for each technique.
Face detection based croppingFaces were detected by CMU’s algorithm as described
above. If there were multiple faces detected, we chose the bounding region that contains
all detected faces. Then twelve levels of thumbnails from 36 to 80 pixels were prepared

for the experiment.
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7.4.5 Recognition Task

We used the “Animal Set” and the “Face Set” images to measure how accurately partic-
ipants could recognize objects in small thumbnails. First, users were asked to identify
animals in thumbnails. The thumbnails in this task were chosen randomly from all lev-
els of the Animal Set images. This task was repeated 50 times. When the user clicked
the “Next” button, a thumbnail was shown as in Figure 7.8 for two seconds. Since we
intended to measure pure recognizability of thumbnails, we limited the time thumbnails
were shown. According to our pilot user study, users tended to guess answers even though
they could not clearly identify objects in thumbnails when they saw them for a long time.
To discourage participants’ from guessing, the interface was designed to make thumbnails
disappear after a short period of time, two seconds. For the same reason, we introduced
more animals in the answer list. Although we used only ten animals in this experiment,
we listed 30 animals as possible answers as seen in Figure 7.8, to limit the subject’s abil-
ity to guess identity based on crude cues. In this way, participants were prevented from
choosing similarly shaped animals by guess. For example, when participants think that
they saw a bird-ish animal, they would select swan if it is the only avian animal. By
having multiple birds in the candidate list, we could prevent those undesired behaviors.
After the Animal Set recognition task, users were asked to identify a person in the
same way. This Face Set recognition task was repeated 75 times. In this session, the

candidates were shown as portraits in addition to names as seen in Figure 7.8.
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7.4.6 Visual Search Task

For each testing condition in Table 7.1, participants were given two tasks. Thus, for each
visual search session, fourteen search tasks were assigned per participant. The order of
tasks was randomized to reduce learning effects.

As shown in Figure 7.9, participants were asked to find one image among 100
images. For the visual search task, it was important to provide equal search conditions for
each task and participant. To ensure fairness, we designed the search condition carefully.
We suppressed the duplicate occurrences of images and manipulated the locations of the
target images.

For the Animal Set search tasks, we randomly chose one target image out of 50

Animal Set images. Then we carefully selected 25 non-similar looking animal images.
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After that we mixed them with 49 more images randomly chosen from the filler set as
distracters. For the Face Set and Corbis Set tasks, we prepared the task image sets in the
same way.

The tasks were given as verbal descriptions for the Animal Set and Corbis set tasks.
For the Face Set tasks, a portrait of a target person was given as well as the person’s name.
The given portraits were separately chosen from an independent collection so that they

were not duplicated with images used for the tasks.

B 1ok (2/14)
Find a photd of the shown person

ﬂlumuanzﬂﬂ

Figure 7.9: Visual search task interface. Participant were asked to find an image that
matches a given task description. Users can zoom in, zoom out, and pan freely until they

find the right image.
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We used a custom-made image browser based on PhotoMesa [14] as our visual
search interface. PhotoMesa provides a zooming environment for image navigation with
a simple set of control functions. Users click the left mouse button to zoom into a group
of images (as indicated by a red rectangle) to see the images in detail and click the right
mouse button to zoom out to see more images to overview. Panning is supported either by
mouse dragging or arrow keys. The animation between zooming helps user to remember
where things fit together based on spatial relationships. PhotoMesa can display a large
number of thumbnails in groups on the screen at the same time. Since this user study
was intended to test pure visual search, all images were presented in a single cluster as in
Figure 7.9.

Participants were allowed to zoom in, zoom out and pan freely for navigation. When
users identify the target image, they were asked to zoom into the full scale of the image
and click the “Found it” button located on the upper left corner of the interface to finish
the task. Before the visual search session, they were given as much time as they wanted
until they found it comfortable to use the zoomable interface. Most participants found it

very easy to navigate and reported no problem with the navigation during the session.

7.4.7 Recognition Task Results

Figure 7.10 shows the results from the recognition tasks. The horizontal axis represents
the size of thumbnails and the vertical axis denotes the recognition accuracy. Each data
point in the graph denotes the successful recognition rate of the thumbnails at that level.
As shown, the bigger the thumbnails are, the more accurately participants recognize ob-

jects in the thumbnails. And this fits well with our intuition. But the interesting point here
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is that the automatic cropping techniques perform significantly better than the original

thumbnails.

Animal Set Result Face Set Result

percent of target recognized
percent of target recognized

02
—+ No cropping
01 —+ No cropping 0.1 —&— Saliency based cropping
—&— Saliency based cropping —+— Face detection based cropping
D 1 1 1 1 U 1 1 1 1
30 40 50 60 40 50 60 70
Size of thumbnail in pixels Size of thumbnail in pixels

Figure 7.10: Recognition Task Results. Dashed lines are interpolated from jagged data

points.

There were clear correlations in the results. Participants recognized objects in big-
ger thumbnails more accurately regardless of the thumbnail techniques. Therefore, we
used Paired T-test (two tailed) to analyze the results. The results are shown in Table 7.3.

The first graph shows the results from the “Animal Set” with two different thumb-
nail techniques, no cropping and saliency based cropping. As clearly shown, users were
able to recognize objects more accurately with saliency based cropped thumbnails than
with plain thumbnails with no cropping. One of the major reasons for the difference can
be attributed to the fact that the effective portion of images is drawn relatively larger in
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saliency based cropped images. But, if the main object region is cropped out, this would
not be true. In this case, the users would see more non-core parts of images and the
recognition rate of the cropped thumbnails would be less than that of plain thumbnails.
The goal of this test is to measure if saliency based cropping cut out the right part of
images. The recognition test result shows that participants recognize objects better with
saliency based thumbnails than plain thumbnails. Therefore, we can say that saliency

based cropping cut out the right part of images.

Table 7.3: Analysis results of Recognition Task (Paired T-Test). Every curve in Figure 12
is significantly different from each other.

Condition t—value| P value
No cropping vs. Saliency based cropping on AS 4.33 0.002
No cropping vs. Saliency based cropping on FS 4.16 0.002

No cropping vs. Face Detection based cropping on FS 9.56 | <0.001
Saliency based cropping vs. Face detection based cropping on F$84 | < 0.001
AS vs. FS with no cropping 5.00 0.001
AS vs. FS with saliency based cropping 3.08 0.005

During the experiment, participants mentioned that the background sometimes helped
with recognition. For example, when they saw blue background, they immediately sus-
pected that the images would be about sea animals. Similarly, the camel was well identi-
fied in every thumbnail technique even in very small scale thumbnails because the images
have unique desert backgrounds (4 out of 5 images).

Since saliency based cropping cuts out large portion of background (42.4%), we
suspected that this might harm recognition. But the result shows that it is not true. Users
performed better with cropped images. Even when background was cut out, users still
could see some of the background and they got sufficient help from this information. It

implies that the saliency based cropping is well balanced. The cropped image shows the
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main objects bigger while giving enough background information.

The second graph shows results similar to the first. The second graph represents
the results from the “Face Set” with three different types of thumbnail techniques, no
cropping, saliency based cropping, and face detection based cropping. As seen in the
graph, participants perform much better with face detection based thumbnails. It is not
surprising that users can identify a person more easily with images with bigger faces.

Compared to the Animal Set result, the Face Set images are less accurately identi-
fied. This is because humans have similar visual characteristics while animals have more
distinguishing features. In other words, animals can be identified with overall shapes and
colors but humans cannot be distinguished easily with those features. The main feature
that distinguishes humans is the face. The experimental results clearly show that partici-
pants recognized persons better with face detection based thumbnails.

The results also show that saliency cropped thumbnails are useful for recognizing
humans as well as animals. We found that saliency based cropped images include persons
in the photos so that persons in the images can be presented larger in cropped images.
The test results show that the saliency based cropping does increase the recognition rate.

In this study, we used two types of image sets and three different thumbnail tech-
niques. To achieve a higher recognition rate, it is important to show major distinguishing
features. If well cropped, a small sized thumbnail would be sufficient to represent the
whole image. Face detection based cropping shows benefits when this type of feature
extraction is possible. But, in a real image browsing task, it is not always possible to
know users’ searching intention. For the same image, users’ focus might be different for
browsing purposes. For example, users might want to find a person at some point, but the
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next time, they would like to focus on costumes only. We believe that the saliency based
cropping technique can be applied in most cases when semantic object detection is not
available or users’ search behavior is not known.

In addition, the recognition rate is not the same for different types of images. This

implies that the minimum recognizable size should be different depending on image types.

7.4.8 \Visual Search Task Results

Figure 7.11 shows the result of the visual search tasks. Most participants were able to
finish the tasks within the 120 second timeout (15 timeouts out of 231 tasks) and also
chose the desired answer (5 wrong answers out of 231 tasks). Wrong answers and timed
out tasks were excluded from the analysis.

A two way analysis of variance (ANOVA) was conducted on the search time for two
conditions, thumbnail technique and image sets. As shown, participants found the answer
images faster with cropped thumbnails. Overall, there was a strong difference for visual
search performance depending to thumbnail techniques, F(2, 219) = 5.58, p = 0.004.

Since we did not look at face detection cropping for the Animal Set and the Corbis
Set, we did another analysis with the two thumbnail techniques (plain thumbnail, saliency
based cropped thumbnail) to see if the saliency based algorithm is better. The result shows
a significant improvement on visual search with saliency based cropping, F(1, 190) =
3.823, p=0.05. We therefore believe that the proposed saliency based cropping algorithm
make a significant contribution to visual search.

When the results from the Face Set alone were analyzed by one way ANOVA with

three thumbnail technique conditions, there also was a significant effect, F(2, 87)=4.56,
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Figure 7.11: Visual search task results.

Table 7.4: List of ANOVA results from the visual search task.

Condition F value| P value
Thumbnail techniques on three sets 5.58 | 0.004
Thumbnail techniques on FS 456 | 0.013

No cropping vs. Saliency based thumbnail on three image|se3s82 | 0.052
Three image sets regardless of thumbnail techniques| 2.44 | 0.089

p = 0.013. But for the Animal Set and the Corbis Set, there was only a borderline sig-

nificant effect over different techniques. We think that this is due to the small number of

observations. We believe those results would also be significant if there were more par-
ticipants because there was a clear trend showing an improvement of 18% on the Animal
Set and 24% on the Corbis Set. Lack of significance can also be attributed to the fact
that the search task itself has large variances by its nature. We found that the location
of answer images affects the visual search performance. Users begin to look for images

from anywhere in the image space (Figure 7.9). Participants scanned the image space
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from the upper-left corner, from the lower-right corner, or sometimes randomly. If the
answer image is located in the initial position of users’ attention, it would be found much
earlier. Since we could not control users’ behavior, we randomized the location of the
answer images. But as a result, there was large variance.

Before the experiment, we were afraid that the cropped thumbnails of the Corbis
Set images would affect the search result negatively since the images in the Corbis Set
are already in good shape and we were concerned that cutting off their background would
harm participants’ visual search. But according to our result, saliency based cropped
thumbnails does not harm users’ visual search. Rather, it showed a tendency to increase
participants’ search performance. We think that this is because the saliency based crop-
ping algorithm cut the right amount of information without removing core information in
the images. At least, we can conclude that it did not make visual search worse to use the
cropped thumbnails.

Another interesting thing we found is that the visual search task with the Animal
Set tends to take less time than with the Corbis Set and the Face Set, F(2, 219) =2.44, p
=0.089. This might be because the given Corbis Set and Face Set tasks were harder than
the Animal Set. But we think there is another interesting factor. During the experiment,
when he found the answer image after a while, one participant said that.“Ctnis is
not what | expected. | expected blue background when I'm supposed to find an airplane.”
Since one of the authors was observing the experiment session, it was observed that the
participant passed over the correct answer image during the search even though he saw
the image at reasonably big scale. Since all of the visual search tasks except finding faces
were given as verbal descriptions, users did not have any information about what the
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answer images would be like. We think that this verbal description was one of the factors
in performance differences between image sets. We found that animals are easier to find

by guessing background than other image sets.

7.5 Discussion and Conclusion

We developed and evaluated two automatic cropping methods. A general thumbnail crop-
ping method based on a saliency model finds the informative portion of images and cuts
out the non-core part of images. Thumbnail images generated from the cropped part of
images increases users’ recognition and helps users in visual search. This technique is
general and can be used without any prior assumption about images since it uses only low
level features. Furthermore, it also can be used for images already in good shape. Since
it dynamically decides how much to cut away, it can prevent cutting out too much.

The face detection based cropping technique shows how semantic information can
be used to enhance thumbnail cropping. With a face detection technique, we created
more effective thumbnails, which significantly increased users’ recognizing and finding
performance.

Our study shows strong empirical evidence that the more salient a portion of image,
the more informative it is. We also showed that using more recognizable thumbnails
increases visual search performance.

Another finding of interest is that users tend to have mental models about search
targets. Users tend to develop a model about what a target will look like by guessing its

color and shape. We observed that they spent a long time searching or even skipped the
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correct answer when their guesses were wrong or they were unable to guess. It is known
that humans have an “attentional control setting” - a mental setting about what they are
(and are not) looking for while performing a given task. Interestingly, it is also known that
humans have difficulty in switching their attentional control setting instantaneously [42].
This theory explains our observation. We think that this phenomenon should be regarded
in designing image browsing interfaces especially in situations where users need to skim
a large number of images.

There are several interesting directions for future research. One direction involves
determining how to apply these techniques to other browsing environments. In our study,
we used a zoomable interface for visual search. We believe that the image cropping tech-
niques presented in this chapter can benefit other types of interfaces that deal with a large
number of images as well. While our research confirms that well cropped thumbnails can
increase users’ visual search performance, we did not try to build a model about recog-
nition, attention and its relationship on image browsing. Further research about human’s
attention and perception model [115, 159] would help designing a better image browsing
system.

Another interesting direction would be to combine image adaptation techniques (i.e.
saliency based smoothing) with the image cropping techniques. This would allow faster

thumbnail processing and delivery for thumbnail-based retrieval systems.
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Chapter 8

Future Work

In this dissertation, several problems in image retrieval have been studied and some solu-
tions were proposed. In the future, we expect extensions of these work, both theoretically
and practically. Some of the future works are discussed in the following paragraphs.
Robust object representation First, we are very interested in finding out the relationship
between the part structure and the inner-distance. Part structure is a fundamental problem
in computer vision that is still open. Considering the fact that the inner-distance captures
part structure and the strong connection between articulation and parts, we expect more
understanding of part structure from the study of the inner-distance. Second, we hope
to deepen our understanding of deformation invariant framework for intensity images.
In the same time, we are also interested in designing efficient algorithm to compute the
geodesic-intensity histograms. Third, we will extend the gradient orientation to other
applications such as object class classification [40].

Robust feature comparison For this topic, we would like to move forward mainly in two
directions. On the one hand, we want to find out how diffusion processes are theoretically
related to cross-bin distances such as the Earth Mover’s Distance. This may lead some
distance measures with closed form (thus efficient) solutions. On the other hand, we are
interested in applying machine learning techniques to estimate dissimilarity metrics.

Automatic thumbnail cropping. There are several interesting directions for future re-
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search on thumbnail cropping. One direction is to adaptively determine the thumbnail
size. This involves the human attention and perception model [115, 159]. The other di-
rection is to use learning techniques to study human’s ability on image summarization,

and then apply it to computer based thumbnail cropping.
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