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Abstract

Interactions between moving targets often provide dis-
criminative clues for multiple target tracking (MTT), though
many existing approaches ignore such interactions due to
difficulty in effectively handling them. In this paper, we
model interactions between neighbor targets by pair-wise
motion context, and further encode such context into the
global association optimization. To solve the resulting
global non-convex maximization, we propose an effective
and efficient power iteration framework. This solution en-
joys two advantages for MTT: First, it allows us to combine
the global energy accumulated from individual trajectories
and the between-trajectory interaction energy into a united
optimization, which can be solved by the proposed power
iteration algorithm. Second, the framework is flexible to
accommodate various types of pairwise context models and
we in fact studied two different context models in this paper.
For evaluation, we apply the proposed methods to four pub-
lic datasets involving different challenging scenarios such
as dense aerial borne traffic tracking, dense point set track-
ing, and semi-crowded pedestrian tracking. In all the exper-
iments, our approaches demonstrate very promising results
in comparison with state-of-the-art trackers.

1. Introduction
With great advances in object detection [8, 9], data asso-

ciation based multi-target tracking (DAT) has been gaining
popularity recently. An effective DAT algorithm needs to
address intrinsic association ambiguities due to challenges
such as appearance similarity, occlusion and fast motion.
A group of DAT algorithms focus on reducing the associ-
ation ambiguity by collecting multi-frame observations in
the time window, and making the association decisions in
a batch way. Association across multiple frames is more
robust than the recursive tracking counterparts, but mean-
while more difficult to obtain the global solution. Different
optimization strategies, such as linear programming [12],
network flow [25, 17, 2, 6] and tensor approximation [19],

Figure 1. Contextual modeling in a 3-frame association. a) Tem-
poral global trajectory energy. b) Spatial interaction energy (one
block). c) Higher-order compound energy (tensor representation).

have been proposed to solve the high-dimensional associa-
tion problem. However, insufficient attention has been de-
voted to the interactions between target associations, except
for the simple constraint that one target belongs to at most
one association.

In this paper, we propose computationally efficient mo-
tion contexts to model the interaction between any local
associations and integrate seamlessly the contexts into a
power iteration association framework. In particular, we
unite the pairwise interaction energy and the unary trajec-
tory energy into a single optimization framework. Then, a
power iteration solution is proposed for the complex non-
convex optimization. Relations among the unary trajectory
energy, the pairwise interaction energy and the united en-
ergy are illustrated in Fig. 1. The framework has three
key ingredients to address challenges in MTT. First, the
between-trajectory interaction is treated in a global data as-
sociation framework; such a combination of context model-
ing and high-order trajectory information largely alleviates
the association ambiguity. Second, the united energy term
is encoded in a tensor approximation representation and can
be effectively solved via the proposed power iteration solu-
tion. Finally, the optimization framework provides the flex-
ibility to use different context information, and we devise
two kinds of context representations in this paper.
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We applied the proposed method to MTT and tested it
on four challenging benchmark datasets involving various
scenarios such as wide area traffic scenes, low frame-rate
point set sequences and semi-crowded pedestrian videos.
In all experiments, our approach produces excellent perfor-
mances in comparison with several state-of-the-art trackers.
The superiority of our approach is especially demonstrated
on dense scenes with large association ambiguity between
targets.

2. Related work
Most MTT methods can be roughly divided into two

groups. Methods in the first group use only observations
till the current frame to estimate the current target states,
such as recursive filters [13, 4]. The second group contains
association-based methods that use information from both
previous and future frames to estimate the current states.
The association-based approaches become popular recently,
since solving the data association jointly across multiple
frames are more reliable in general.

By decomposing the global affinity as the product of lo-
cal pairwise items, the global association can be formulated
as a network flow problem [25, 17, 2]. The decomposition
on the affinity achieves the efficient global solution at the
cost of limited discriminability, since higher-order motion
information, which is very useful to ease the association
ambiguity, is lost. Addressing this issue, the global affin-
ity is used to enhance the association robustness in some
recent methods such as [7, 19]. Our work shares the similar
idea with [7, 19] in modeling high-order motion informa-
tion using global trajectory affinity. In particular, the power
iteration solution in our approach is inspired by the tenor
approximation solution in [19]. That said, we integrate the
context information into the global association, which has
not been exploited by previous approaches. We emphasize
here that the seamless integration is non-trivial (as shown
in the next section), and is very beneficial (as shown in the
experiments).

Modeling the interactions among targets is important
for crowded scene and traffic analysis, where objects have
grouping behavior [10, 16, 21] and follow the similar
motion pattern (e.g. velocity) in local temporal-spatial
cubes [1]. In the classic social force model (SFM) [11], a
series of social forces are defined for a pedestrian, to avoid
collision and choose a desired direction for the destination.
Though powerfully used in pedestrian tracking [15, 18, 14],
SFM is complicated and requires pre-training from the sim-
ilar scenes, as well as the prior knowledge such as the des-
tinations which are not universally available. Further, with
the embedding of interaction based motion model, most ap-
proaches [1, 15, 14, 21] are limited to the predictive track-
ing framework, such as recursive filters. However, the local
(temporal) association is often troubled by the intrinsic mo-

tion ambiguity. In [1], the motion context is a collection
of trajectories of objects, and is used to predict and reac-
quire occluded targets. In [5], the association problem is
formulated as finding the maximum weighted independent
set, and the interaction between two trajectories is embed-
ded as the soft constraint.

3. Encoding Context in Association

Multi-frame data association is popularly formulated as
a multi-dimensional assignment (MDA) problem [7], which
is the NP hard in general. In [19], MDA is reformulated as
a rank-1 tensor approximation problem and consequently
leads to an efficient tensor approximation solution. In the
following, we first review the basic optimization formula-
tion, and then show the united optimization framework en-
coding the motion context. Finally, we give the power iter-
ation solution for the united optimization.

3.1. Problem Formulation

Assume the association is performed on a K+1 frame
sequence, each frame has N targets1, and M =N2 denotes
the number of possible two-frame associations. Suppose the
ik-th(1≤ ik≤N) target in the k-th(0≤k≤K) frame is okik ,
the global trajectory hypothesis with targets o0i0 , o

1
i1
, ..., oKiK

is represented as Ti0i1...iK , with trajectory energy si0i1...iK .
For targets ok−1ik−1

and okik , their association variables are
represented interchangably as xk

ik−1ik
(as an element of an

assignment matrix) and vklk (as an element of the vectorized
assignment vector), such that lk = (ik−1−1)×N+ ik.

In the hard decision, xk
ik−1ik

has a binary value as 0 or 1,
where 1 means targets ok−1ik−1

and okik are associated, and 0
otherwise. While in the soft decision, xk

ik−1ik
represents the

probability of associating ok−1ik−1
and okik .

The trajectory affinity is represented using association
index as

al1l2...lK =

{
sl1 l2...lK lK

, if lk+1= lk, 1 ≤ k < K

0, otherwise
(1)

where lk and lk denote the indexes of the two targets con-
nected in association vklk (i.e., ik−1 and ik), and sl1 l2...lK lK

is the affinity for trajectory l1l2 . . . lK lK . Formally, we
have lk =

⌈
lk
N

⌉
, where ⌈·⌉ is the up rounding operator, and

lk = lk − (lk − 1)×N .
Denote V={V k : k = 1, . . . ,K} as the set of associ-

ation vectors we are seeking, and each vector is defined
by V k = (vk1 , v

k
2 , . . . , v

k
M )⊤ ∈ RM . With these notations,

1Assuming fixed number of targets is for presentation convenience,
variable numbers of targets do not hurt the formulation and derivation.



multi-frame data association can be formulated as the fol-
lowing optimization [19]

max
V

∑
L

al1l2...lKv1l1v
2
l2 · · · v

K
lK , (2)

s.t.


∑
ik−1

xk
ik−1ik

= 1, k ∈ {1, 2, ...,K}∑
ik

xk
ik−1ik

= 1, k ∈ {1, 2, ...,K}

0 ≤ xk
ik−1ik

≤ 1, k ∈ {1, 2, ...,K}

(3)

For notation conciseness, in the above formulae and here-
after we define L = {l1, l2, · · · , lK} and use

∑
L to denote

the series of summation
∑M

l1=1

∑M
l2=1 · · ·

∑M
lK=1.

The constrained optimization (2) is challenging due to
the very high-dimensional solution space. In work [19],
it demonstrates the close relations between the optimiza-
tion and rank-1 tensor approximation problem, and further
presents an efficient iteration approach for the optimization.

3.2. Encoding Context Information

We aim at combining the individual temporal energy and
spatial interaction energy of trajectories into a united opti-
mization framework. Modeling the contextual relations of
two trajectories over a long term is risky, as the motion pat-
terns of a target are changing over time. We focus on the
interaction between two trajectories in a short term. Spe-
cially, we consider the pairwise interactions between two
associations on neighboring detections or tracklets.

For two-frame association hypothesis T k
lk

and T k
jk
(1 ≤

k≤K), whose association variables are vklk and vkjk respec-
tively. We define the interaction energy between T k

lk
and T k

jk

as cklkjk . By embedding the interaction energy, the total en-
ergy is represented as the linear combination of two types
of energies. In this way, the combinational optimization is
formulated as

max
V

∑
L

al1...lKv1l1...v
K
lK + α

K∑
k=1

∑
lk,jk

cklkjkv
k
lk
vkjk , (4)

where α is the weighting parameter, and the optimization
has the same constraints as Eq. (3). Intuitively, the second
term in (4) models the between-association interaction.

3.3. Power Iteration Solution

The new problem (4) is more difficult than the basic
one (2) due to the quadratic context items, where vklk and vkjk
lie in the same block and couple with each other. In the fol-
lowing, we decouple the interdependency between vklk and
vkjk to simplify the optimization. If two association hypoth-
esis T k

lk
and T k

jk
share the same target, that is lk = jk or

lk = jk, we set their interaction energy cklkjk as 0. This is
reasonable as one target can not be in two real associations.

Next, we make some reformulations to make (4) self-
consistent. With constraint (3), there are formulations as

∑
lk

vlk
k = N, k = 1, 2, ...,K∑

jk:jk ̸=lk

vkjk = N − 1, ∀lk, k = 1, 2, ...,K (5)

Using the formulation (5), the two components in (4) can
be rewritten as∑

L
al1...lKv1l1 . . . v

K
lK

=

1
N−1

∑
L

∑
jk:jk ̸=lk

al1...lKv1l1...v
k
lk
vkjk...v

K
lK
, (6)

∑
lk,jk

cklkjkv
k
lk
vkjk =

1
NK−1

∑
L

∑
jk:jk ̸=lk

cklkjkv
1
l1
...vklkv

k
jk
...vKlK .

(7)

Merging (6) and (7), optimization (4) is rewritten as

max
V

∑
L

∑
jk:jk ̸=lk

el1...lkjk...lKv
1
l1
...vklkv

k
jk
...vKlK

+ α(N−1)
∑
f ̸=k

∑
lf ,jf

cflf jf v
f
lf
vfjf ,

(8)

where el1...lkjk...lK is the element of the (K + 1)-th
augmented tensor, which is a combination of the items
al1...lk...lK and cklkjk , and is computed as

el1...lkjk...lK = al1...lk...lK +
α(N−1)

NK−1
cklkjk . (9)

The relation between the new context aware tensor and the
original tensor is illustrated in Fig. 1.

We apply the block update strategy [7, 19] to opti-
mize (8) iteratively. When updating block variables in V k,
other block variables V f (f ̸= k) are fixed. In this manner,
optimization (8) degenerates into the following formulation

max
V k

∑
L

∑
jk:jk ̸=lk

el1...lkjk...lKv
1
l1
...vklkv

k
jk
...vKlK . (10)

The optimizations (10) and (2) share the similar form.
The former is performed on all block variables V f , f =
1,. . .,K, while the latter is on the block variable V k for a
certain k. We further reformulate (10) as

max
V k

∑
L

∑
jk:jk ̸=lk

el1...lkjk...lKv
1
l1
. . . vklkv

k
jk
. . . vKlK

=
N∑

n=1
max

vk
lk
:lk=n

Ek
n ,

(11)

where

Ek
n=

∑
l1

...
∑

lk:lk=n

∑
jk:jk̸=n

...
∑
lK

el1...lkjk...lKv
1
l1
...vklkv

k
jk
...vKlK . (12)

This way, (10) is divided into a series of subproblems. In
each subproblem, the interdependency between vklk and vkjk



Algorithm 1 Power iteration with interaction
1: Input: Global energy A : al1...lk...lK .

interaction energy Ck :cklkjk , k ∈ {1, . . . ,K}.
2: Output: association variables V k:{vk1,...,vkM}(1≤k≤K).
3: Initialize V 1, . . . , V K ;
4: repeat
5: for k = 1, . . . ,K do
6: for ik−1 = 1, . . . , N do
7: for ik = 1, . . . , N do
8: φik−1ik=

∑
lf :f ̸=k

al1...lKv
1
l1
...vflf...v

K
lK

.

9: ϕik−1ik=
∑

jk:{jk̸=ik−1}
cklkjkv

k
jk

.

10: end for
11: ∀ik, xk

ik−1ik
=

xk
ik−1ik

(φik−1ik
+αϕik−1ik)∑

ik
xk
ik−1ik

(φik−1ik
+αϕik−1ik)

;

12: end for
13: ∀ik−1, xk

ik−1ik
=

xk
ik−1ik∑

ik−1
xk
ik−1ik

;

14: end for
15: until convergence

is decoupled, and the subproblem has the similar formula-
tion with (2). We can then use tensor power iteration [19]
for solving each subproblem, and the key iteration is

vklk ∝ vklk
∑

L\{k}

∑
jk:jk̸=lk

el1...lkjk...lKv
k
jk
v1l1v

2
l2
. . . vKlK

∝ vklk

( ∑
L\{k}

al1...lKv
1
l1
v2l2 . . . v

K
lK
+α

∑
jk:jk̸=lk

cklkjkv
k
jk

)
.

(13)

We update the block variables V k(1 ≤ k ≤ K) in turn
to obtain the (local) optimum of (4), the power iteration is
presented as Alg. 1.

4. Motion Context
In this section, we define the interaction energy cklkjk .

Specifically, we propose two types of motion contexts, low-
level context and high-level context, to represent different
types of interactions on associations.

4.1. Low­level context

Low-level motion context measures the interaction be-
tween two associations on raw detections. First, we give the
motion consistency representation for any association pair.
Then the specific motion context formulation is presented,
by using the non-maximum suppression (NMS) strategy.

Suppose T k
lk

represents the association hypothesis con-
necting targets ok−1ik−1

and okik , pk−1
ik−1

(pk
ik
) is the spatial posi-

tion of the target ok−1ik−1
(okik). For another association hypoth-

esis T k
jk

, it associates targets ok−1ik−1
′ and okik′ , whose spatial

positions are pk−1
i′k−1

and pk
i′k

respectively. Then, the motion

Figure 2. Low-level motion context. For association hypothe-
sis Bb, the neighbor targets are A and C, each has three associ-
ation candidates. For all association candidates of A, interaction
between Ab and Bb is filtered as one-to-one mapping constraint,
interaction between Ae and Bb is filtered as non-maximum sup-
pression, only interaction between Aa and Bb is retained. For
target C, only energy between Cc and Bb is retained.

consistency between T k
lk

and T k
jk

is defined as

mk
ik−1ik,i′k−1i

′
k
=mk

lkjk
=

∣∣zklk⊤zkjk ∣∣∥∥zklk∥∥∥∥zkjk∥∥+
λ
∥∥zklk∥∥∥∥zkjk∥∥∥∥zklk∥∥2+∥∥zkjk∥∥2 , (14)

where zklk=pk
ik
−pk−1

ik−1
and zkjk=pk

i′k
−pk−1

i′k−1
, both of which

represent the spatial displacement (velocity) vector; λ is the
weighting parameter. Formulation (14) is intuitive, the mo-
tion consistency is computed from the orientation similarity
and the speed similarity.

Modeling the interaction between any two associations
is meaningless, since targets only in the local spatial neigh-
borhood follow the similar motion. Specifically, we define
the low-level motion context as a selective representation,
the context between T k

lk
and T k

jk
is formulated as

cklkjk=IΩ

(
ik−1,i

′
k−1,ik,i

′
k,p

k−1
ik−1

,pk−1
i′k−1

,pk
ik
,pk

i′k

)
mk

lkjk
, (15)

where IΩ(·) is the indicator function, it has value 1 when
condition set Ω is true, otherwise it is 0. Ω is defined as

Ω:
{
ik−1 ̸= i′k−1

}∩
{ik ̸= i′k}

∩{∥∥∥pk−1
ik−1

−pk−1
i′k−1

∥∥∥<L
}

∩{∥∥∥pk
ik
−pk

i′k

∥∥∥<L}∩{
i′k=max

j
mk

ik−1ik,i′k−1j

}
,

(16)

where L is the distance threshold. Set Ω constitutes of three
parts: one-to-one mapping constraint, spatial distance mask
and non-maximum suppression.

Low-level context is illustrated in Fig. 2. NMS is very
important and effective, because the selection mechanism
makes a binding for two association candidates with similar
motion patterns and drives them to be true or wrong syn-
chronously. The underlying assumption in this procedure is
that real associations around the target follow similar mo-
tion patterns, while wrong associations are irregular in mo-
tion statistics. Further, it is robust by suppressing the influ-
ences from noisy and conflicting association counterparts.



Figure 3. High-level motion contexts. a) Context-A: interaction
between association Tjk and tracklet Ti; b) Context-B: interaction
between any two tracklet associations.

4.2. High­level Context

When frame-between motions are notable and reliable,
low-level context is valuable, such as the low-frame rate or
fast motion applications. In most pedestrian tracking, bad
located object detections (raw zigzag trajectory) along with
low-speed motion make raw detection based low-level con-
text unreliable. In this section, we devise two kinds of high-
level contexts to model the motion interaction on tracklet
associations, which are illustrated in Fig. 3.

Suppose Ti :
{
o
tis
i ,o

tis+1
i , ..., o

tie
i

}
represents the i-th track-

let, where tis and tie denotes the start time and end time of Ti

respectively. The spatial displacement from the target ot−1i

to oti is represented as zti = pt
i−p

t−1
i and pt

i(p
t−1
i ) is the spa-

tial position of the target oti(o
t−1
i ). For other tracklets such

as Tj and Tk, there are similar notations and definitions.

For two tracklets Tj :
{
o
tjs
j , ..., o

tje
j

}
and Tk :

{
o
tks
k , ..., o

tke
k

}
showed in Fig.3-(a), there exists association hypothesis

Tjk :{o
tjs
j , ...,o

tje
j ,o

tje+1
jk , ...,o

tks−1
jk ,o

tks
k, ...,o

tke
k }, where otjk(t

j
e<t<tks)

is the interpolated target using Tj and Tk. Then the motion
interaction between Tjk and Ti in Fig.3-(a) is defined as

mjk,i =
1

tks − tje

tks∑
t=tje+1

∣∣ztjk⊤zti∣∣∥∥ztjk∥∥∥∥zti∥∥ , (17)

where ztjk is the spatial displacement from target ot−1jk to otjk.
For context-A of Tjk, we consider interactions from all

neighbor tracklets around Tjk, and give the final formula-
tion. Suppose tracklet set is T :{T1,..., TC}, where C is the
number of tracklets, then context-A of Tjk is computed as

scjk =

C∑
c=1

mjk,cIΦ
(
tje, t

k
s , t

c
s, t

c
e,p

tje
j ,p

tks
k ,p

tje
c ,p

tks
c

)
C∑

c=1
IΦ
(
tje, tks , t

c
s, t

c
e,p

tje
j ,p

tks
k ,ptje

c ,p
tks
c

) , (18)

where Φ denotes the condition set defined as:{
tcs ≤ tje

}∩{
tks ≤ tce

}∩{∥∥ptje
c − p

tje
j

∥∥ < L
}∩{∥∥ptks

c − p
tks
k

∥∥ < L
}
.

(19)

As shown in Fig.3-(a), Φ selects the spatial neighbor
tracklets which are overlapped with Tj and Tk in the time
window. Context-A (18) measures the average motion in-
teraction between contextual tracklets and Tjk.

Suppose association hypothesis Tjk connects tracklet Tj

and Tk, association hypothesis Tfh connects tracklet Tf and

Th, as is shown in Fig. 3-(b). Motion similarity between Tjk

and Tfh is computed as

mjk,fh =
1

tkhs − tjfe

tkh
s∑

t=tjfe +1

∣∣ztjk⊤ztfh∣∣∥∥ztjk∥∥∥∥ztfh∥∥ , (20)

where ztjk(z
t
fh) denotes the spatial displacement from tar-

get ot−1jk (ot−1fh ) to otjk(o
t
fh) . tkhs and tjfe are computed as

tkhs = min{ths , tks}; tjfe = max{tfe , tje}. (21)

Eq. (20) computes the temporal average of motion sim-
ilarities between Tjk and Tfh. Context-B between Tjk and
Tfh is computed as

cjk,fh =

IΨ
(
tkhs , tjfe , j, k, f, h,p

tjfe
j ,p

tjfe
f ,p

tkh
s

h ,p
tkh
s

k

)
mjk,fh,

(22)

where condition set Ψ is defined as:{
tjfe <tkhs

}∩{
j ̸=f

}∩{
k ̸=h

}∩{∥∥ptjfej −p
tjfe
f

∥∥<L
}∩{∥∥ptkh

s

h − p
tkhs
k

∥∥<L
}∩{

h=maxg mjk,fg

}
.

(23)

Condition set Ψ is similar with Ω which is used in low-
level context, and Context-B measures the motion interac-
tion between any two tracklet association hypotheses.

Association on tracklets is performed as the extended
two-frame association (i.e. K =1), thus the global affinity
degenerates into al1(1≤ l1≤C2), and the pairwise interac-
tion element is c1l1j1 , i.e., Eq. (22).

5. Experiments
We evaluate the proposed approach on four public

datasets, Columbus Large Image Format (CLIF) [22], PSU-
data [10], PETS 2009 and TUD-Stadtmitte. The first two
datasets are low frame-rate (1∼2 fps) sequences, which are
used to test the proposed low-level motion context. The last
two pedestrian sequences are used to validate the effective-
ness of the high-level motion context.

5.1. Low Frame­rate Sequences

Both CLIF and PSUdata are challenging as the targets
have fast motions, along with other challenges. CLIF has
extra difficulties such as a large amount of targets, tiny ob-
ject occupy, similar target appearance and so on. PSUdata
are point set sequences, which are challenging as the vi-
sual cues relied heavily by many tracking approaches are
unavailable.

Three CLIF sequences, seq1, seq2 and seq3, are used in
the experiments. There are about 80 targets in each frame
for seq1 and seq2, and 200 targets for seq3. Three PSU-
data sequences, dense-1fps, dense-2fps and sparse-1fps are
tested in the second experiment. The first two contain about



20 targets in each frame, and the last one has 3∼5 objects
in each frame.

For CLIF, the global affinity al1l2...lK in (4) is defined as

al1l2...lK = e1l1e
2
l2 ...e

K
lKdl1l2...lK , (24)

where eklk and dl1l2...lk are appearance/shape affinity and
motion affinity, respectively. Specifically, for an association
hypothesis T k

lk
, its appearance/shape affinity is defined as

elk =
2qk−1ik−1

qkik

(qk−1ik−1
)2 + (qkik)

2
+

∑
b
min

(
h
ik−1

b , hik
b

)
, (25)

where qk−1ik−1
(qkik) denotes the area of the target ok−1ik−1

(okik),

and h
ik−1

b (hik
b ) is b-th bin of the color histogram of the target

ok−1ik−1
(okik). The motion affinity is defined as

dl1l2...lK ∝
K−1∏
k=1

exp
( zklk

⊤
zk+1
lk+1

∥zklk∥∥z
k+1
lk+1

∥
+

2∥zklk∥∥z
k+1
lk+1

∥
∥zklk∥

2 + ∥zk+1
lk+1

∥2
)
,

(26)

where zklk is the spatial displacement of T k
lk

.
The motion affinity (26) has the similar formulation with

the motion consistency representation (14), both of which
aim at enforcing compatible motion patterns. The differ-
ence is that (26) focuses on the motion smoothness of the
same target within the temporal window, while the con-
text (14) pays attention to the motion coherence between
spatial neighbor targets.

Global affinity al1l2...lK used in PSUdata is defined as

al1l2...lK= E0 − Econt − Ecurv

= E0 − η
K∑

k=1

∥∥zklk∥∥−
K−1∑
k=1

∥∥∥zk+1
lk+1

− zklk

∥∥∥, (27)

where η is the weighting parameter; E0 is a large constant
to make the affinity positive; Econt is used to penalize the
large jump in position for any association, and Ecurv is the
constant-velocity model to assure the similar motions for
consecutive associations.

The source inputs for the PSUdata are the ground truth
data, each point is featured with a spatial coordinate. While
the inputs for the CLIF are from vehicle detection [20]. The
frame number in a batch is 5 and 6 for CLIF and PSUdata
respectively. Some parameters are set as follows: λ in (14)
is 0.6 and 2.0 for CLIF and PSUdata respectively; α in (4) is
10 and 5 for two datasets respectively; η in (27) is 0.5. Most
parameters are application dependent, such as a smaller λ is
used in CLIF than in PSUdata, since the orientation consis-
tency is more important in the CLIF scenarios.

We compare our work with the tensor method [19], the
network flow approach [17] and the min-cost flow [6].
In [19], we employ the same affinity model al1l2...lK and pa-
rameters. Let cm(t), wm(t) and g(t) represent the numbers
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Figure 4. The energy and association performance variations in
the iteration process (for one batch in PSUdata). Left: the energy
iterated curve; Right: correct match rate curve.

Table 1. Association results of three approaches on the CLIF
Correct match percentage Wrong match percentage
Seq1 Seq2 Seq3 Seq1 Seq2 Seq3

[17] 65.4 71.6 74.6 34.1 28.1 25.7
[19] 91.1 92.1 91.4 11.9 9.4 9.4
Ours 94.7 96.0 95.8 6.0 4.8 4.1

Table 2. Association results of three approaches on the PSUdata
Correct match percentage Wrong match percentage

Dense1 Dense2 Sparse Dense1 Dense2 Sparse
[17] 78.65 98.64 94.57 21.35 1.36 5.43
[6] 98.54 99.83 99.59 1.46 0.17 0.41
[19] 96.98 99.78 99.45 3.01 0.20 0.50
Ours 98.41 99.88 99.74 1.58 0.11 0.24

of correct associations, wrong associations and ground truth
associations at frame t respectively, we use correct match
percentage Pc=100×(

∑
tcm(t)/

∑
tg(t)) and wrong match

percentage Pw=100×(
∑

twm(t)/
∑

tg(t)) to evaluate the
association performance.

Quantitative results on the CLIF and PSUdata2 are pre-
sented in Tab. 1 and Tab. 2 respectively. It can be seen
that the proposed approach performs better than the tensor
method, especially on the CLIF. Both Pc and Pw are im-
proved a lot, and Pw has a remarkable decrease relatively.
It demonstrates the proposed solution and the motion con-
text are effective. The motion context is very useful for
reducing the association ambiguity, as the decision of the
local association is influenced by not only its temporal co-
herence on the whole trajectory, but also its spatial interac-
tion with other associations. Though the performances of
method [19] in PSUdata are close to saturation, yet the em-
bedding of the proposed context improves the results on all
sequences remarkably. The min-cost flow [6] has excellent
performance on the PSUdata, while our approach is slightly
better. The method [17] performs the worst among all algo-
rithms, since the motion information are lost in the network
flow formulation. An example to illustrate the variations
of the energy and association performance in the power it-
eration is shown in Fig. 4, both the combined energy and
basic energies increase in the iteration, and the association
performance is improved gradually too.

Qualitative results are presented in Fig. 5 and Fig. 6.

2The results for method [17] is taken from [7] on the PSUdata.



Figure 5. Tracking results on dense-1fps. Left half for the
first episode and right half for the second episode. From left
to right: our approach (14 mismatches), tensor method [19] (25
mismatches), our approach (12 mismatches), and tensor method
(27 mismatches). All trajectories are color-coded with respect to
ground truth; edges of good trajectories appear in the same color.

Figure 6. Association results on CLIF (part). Top: tensor
method [19] has 6 mismatches; Bottom: our approach has no
mismatch; White (black) rectangles: vehicle detections in current
(last) frame; Red (green) lines: associations on two orientations.

There are fewer association errors for our approach.

5.2. Pedestrian Datasets

The high-level association is performed on tracklet sets,
and the basic tracklets are achieved with the approach [19].

For tracklet Tj :
{
o
tjs
j , ..., o

tje
j

}
and Tk :

{
o
tks
k , ..., o

tke
k

}
, the asso-

ciation affinity used in (4) is computed as

al1 = (sajk + sdjk + scjk) stjk , (28)

where scjk is the contextual affinity, computed as Eq. (18);
sajk, sdjk and stjk are the appearance, spatial distance and
temporal distance affinity respectively, which are defined as

sajk=
∑

b
min

(
hj
b, h

k
b

)
, (29)

stjk=

{
exp(−∆t

TL ), if 0<∆t<TL
0, otherwise

(30)

sdjk=
1
2exp

(∥∥∆d−∆tz
t
j
e

j

∥∥2

−2
∥∥zt

j
e

j

∥∥2

)
+ 1

2exp
(∥∥∆d−∆tz

tks
k

∥∥2

−2
∥∥ztks

k

∥∥2

)
. (31)

Table 3. Tracking results on PETS 2009
Rec Prec TA TP MT PT Frag IDS

[23] 91.8 99.0 - - 89.5 10.5 9 0
[17] 94.0 97.4 88.9 80.9 89.5 10.5 13 10
[19] 96.0 98.2 92.7 81.8 94.7 5.3 11 7
A 97.4 98.5 94.7 81.4 94.7 5.3 8 6
B 96.6 98.8 94.9 81.6 94.7 5.3 8 5
Ours 97.7 98.9 96.1 81.8 94.7 5.3 6 4

Note: ‘A’ in Tab. 3 and Tab. 4 is the approach with high-level context listed
in Fig. 3 (a), and ‘B’ is the approach with context listed in Fig. 3 (b).

In (29), hj
b (hk

b ) is the value in the b-th bin of the average
color histogram of the tracklet Tj (Tk). In (30), ∆t = tks−tje
is the time gap between Tj and Tk, and TL is the temporal
threshold for possible tracklet associations. In (31), ∆d =

p
tks
k−p

tje
j is the spatial displacement from the target ot

j
e
j to o

tks
k ,

and z
tks
k (zt

j
e
j ) is the velocity of Tk (Tj) at instant tks (tje ).

We use pedestrian detection results in [24, 23] as the
association inputs. For fair comparison, we also list their
tracking results in the experiments. α in (4) is set as 0.4 and
0.2 for PETS 2009 and TUD-Stadtmitte respectively. TL
in (29) is set as 25 for both sequences, we do not link two
tracklets with a large time gap, since this association may
be unreliable. Finally, two kinds of metrics are applied to
evaluate the tracking performance. The first is the CLEAR
MOT metric [3]. The second metric [24, 23] evaluates the
numbers of mostly/partially tracked (MT/PT), mostly lost
(ML) trajectories, numbers of fragments and ID switches.

We compare our approach with some state-of-the-art
tracking algorithms [19, 17, 23, 24]. Quantitative results are
presented in Tab. 3 and Tab. 4, and results of [19] are the
performances of further association on tracklets. Our ap-
proach is much better than the tensor method, there are less
fragments and ID switches, as well as higher TA and TP.
The advances on the performances illustrate the effective-
ness of the motion context on reducing association errors
and merging short tracklets into long tracks. Our approach
has more ID switches than the method [23] on PETS 2009,
as most errors in our approach are made in the low-level as-
sociation, where we use the ordinary color histogram. We
believe a more powerful appearance model is helpful in
reducing ID switches. Generally, our approach has lower
fragments and higher MT than methods [23, 24]. For deep
analysis on the motion context, we also give the results of
the approaches with different high-level contexts. It can be
seen both contexts improve the tracking results, and a com-
bination of two kinds of high-level contexts advances the
performances significantly. Qualitative illustrations of our
approaches on two datasets are presented in Fig. 7.

6. Conclusion

In this paper, we propose a new association-based MTT
algorithm by integrating motion context in a power iteration



Figure 7. Tracking results of our approach on the pedestrian datasets. Top: PETS 2009 sequence, Bottom: TUD-Stadtmitte sequence.

Table 4. Tracking results on TUD-Stadtmitte
Rec Prec TA TP MT PT Frag IDS

[24] 87.0 96.7 - - 70.0 30.0 1 0
[17] 83.8 96.5 75.9 82.6 80.0 20.0 10 8
[19] 83.9 98.8 80.4 87.7 70.0 30.0 5 3
A 85.4 98.6 81.3 87.8 80.0 20.0 2 2
B 83.7 99.7 81.8 88.8 80.0 20.0 2 1
Ours 84.0 99.9 82.5 89.3 80.0 20.0 1 0

framework. Our method seamlessly models the interaction
energy between target trajectories and the energy of individ-
ual trajectories in a united optimization framework. Such
integration allows us to use simultaneously contextual cues
and high-order motion information to alleviate the associa-
tion ambiguity. The effectiveness of the proposed approach
is demonstrated clearly thorough experiments.
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