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Visual Tracking via Online Non-negative Matrix
Factorization

Yi Wu*, Member, IEEE , Bin Shen*, and Haibin Ling, Member, IEEE

Abstract—In visual tracking, holistic and part-based representations are both popular choices to model target appearance. The former
is known for great efficiency and convenience while the latter for robustness against local appearance or shape variations. Based
on non-negative matrix factorization (NMF), we propose a novel visual tracker that takes advantage of both groups. The idea is to
model the target appearance by a non-negative combination of non-negative components learned from examples observed in previous
frames. To adjust NMF to the tracking context, we include sparsity and smoothness constraints in addition to the non-negativity one.
Furthermore, an online iterative learning algorithm, together with a proof of convergence, is proposed for efficient model updating.
Putting these ingredients together with a particle filter framework, the proposed tracker, Constrained Online Non-negative Matrix
Factorization (CONMF), achieves robustness to challenging appearance variations and non-trivial deformations while runs in real
time. We evaluate the proposed tracker on various benchmark sequences containing targets undergoing large variations in scale, pose
or illumination. The robustness and efficiency of CONMF is validated in comparison with several state-of-the-art trackers.

Index Terms—Visual tracking, NMF, Non-negative Matrix Factorization, particle filter.
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1 INTRODUCTION

Visual tracking has been attracting research efforts in computer
vision community for decades. It plays an important role
in various applications such as security surveillance, human
computer interaction, media management, etc [45].

A key challenge in visual tracking is to model the target
appearance over time, since it often undergoes non-trivial
variations (e.g., illumination and pose changes) and non-
linear corruptions (e.g., occlusions and motion blur [44]). A
huge amount of previous work has been devoted to visual
tracking with many different appearance models [25], [42].
Appearance features such as color, edge, texture are often used
as object representation [33], [11]. While extremely efficient,
color distribution-based models discard important geometric
information between parts of the target. This issue makes these
trackers vulnerable to variations from the environment (e.g.,
occlusion) or the target itself (e.g., pose change). Alterna-
tively, holistic or part-based methods simultaneously encode
intensity information and geometric information, usually with
a more complex model and more expensive computational
cost. A typical and popular holistic method is template-based
representation [13], [43], which treats a target as a vector in
a space spanned by a template set. A natural extension is
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to use low-dimensional subspace representations to enhance
efficiency and robustness (e.g., [34]). Part-based methods (e.g.,
[20], [37], [27], [1]), on the other hand, emphasize on the
semantic structures of target appearance and address naturally
local appearance changes and non-linear deformation.

To handle temporal variation, dynamical update or learning
schemes have been used in many tracking systems. For exam-
ple, template update is widely used in template-based trackers
(e.g., [28], [4], [10]). Recently, online learning approaches
have been introduced for visual tracking, which dynamically
update trackers with newly available information (e.g., [2],
[24]). Manifold-based representations are used (e.g., [21]) for
modeling pose and view changes.

In this paper, we propose a novel target representation,
based on the Non-negative Matrix Factorization (NMF) [22],
to implicitly combine holistic and part-based methods. The
idea is to model target appearances as non-negative linear
combinations of a set of non-negative basis that implicitly
captures structure information. To encode the characteristics
in the tracking process, we introduce sparsity and smoothness
constraints, which reflect the underlying assumption that target
appearances across frames are drawn from the same mani-
fold. As a result, our representation inherits the implicit part
decomposition and other merits of nonnegativity constraint
from NMF, the conciseness from the sparse representation,
and the rich description power from underlying manifold
representation. As shown in our experiments, our approach
is robust to environmental variation (e.g., illumination change
or noises), target deformation (e.g., shape or pose change),
and corruptions (e.g., partial or full occlusion). The proposed
tracker achieves the state-of-art performances while runs very
fast.

To apply the constrained NMF for visual tracking, we
propose an online algorithm, named Constrained Online Non-
negative Matrix Factorization (CONMF), to capture the dy-
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namic information. CONMF incrementally updates the current
appearance model, represented by the basis matrix U , using
information in the new frame. An illustration of the idea is
shown in Figure 1. Specifically, given a new sample y in a
new frame, the algorithm iteratively and alternatively updates
basis matrix U and the approximation of y with respect to
U . The update is very efficient since only a few iterations are
needed in practice and the convergence is guaranteed in theory.
The representation is then combined with the particle filter
framework [15] for tracking. At each frame, the likelihood of
each particle is derived from its sparse reconstruction error
using the learned basis U . Then, tracking is driven by the
standard sequential Bayesian inference in particle filter.

In summary, there are two main contributions of our work:
First, we propose to use constrained NMF for visual tracking.
To the best of our knowledge, this is the first time constrained
NMF has been used for tracking. Second, we develop a
novel online learning algorithm for the constrained NMF
with guaranteed low computational cost and low memory
cost. The algorithm takes into account the smoothness of
target appearance across frames and efficiently integrates new
information into the learned appearance model. Benefiting
from the combination of NMF with the sparsity, smoothness,
and temporal continuity constraints, the two contributions not
only make the proposed NMF-Tracker robust under different
tracking environments, but also bring great run-time efficiency.
We tested the proposed tracker on several sequences involving
different challenges such as pose change, illumination vari-
ation and occlusion. In the experiments, the NMF-Tracker
demonstrated excellent performances in comparison with eight
alternative state-of-the-art trackers.

Although the proposed approach adopts the sparsity con-
straint, it is based on the NMF representation [22] and dif-
ferent from the sparse tracking approaches [29], [31], [26],
[38], [32] which adopt the sparse representation [39]. In this
paper the target is modeled as an additive combination of
nonnegative components which are learned by a novel online
NMF algorithm to enable our tracker to adapt to new scenario.
However, in [29] the original intensity templates are used as
the basis images and a heuristic approach is adopted to update
the template set. Further, the smoothness constraint adopted in
our approach accelerates the convergence of our tracker which
is much faster than [29].

In the rest of this paper, we first describe in §2 target
representation based on the constrained non-negative matrix
factorization for visual tracking. After that, the proposed track-
er is presented in §3, which focuses on the proposed online
learning algorithm for the evolutionary appearance model. The
experimental validation is then given in §4, followed by the
conclusion in §5.

2 APPEARANCE MODELING

2.1 Particle filter
Before introducing the proposed appearance model, we briefly
review the particle filter framework [15] that we use to inte-
grate the proposed representation for visual tracking. Particle
filter is aimed to estimate the posterior distribution of state

Fig. 1. Online NMF for target representation.

variables of a dynamic system. It uses a set of weighted
particles to approximate the probability distribution of the
state, which enables it to model the nonlinearity and non-
Gaussianity of dynamics. Specifically, we denote the state
of the system at time t by xt and the observation by yt. In
addition, notations Xt = [x1, x2, · · · , xt], Yt = [y1, y2, · · · , yt]
are used for the states and observations till time t, respectively.
The particle filter adopts a weighted particle set {x(i)

t , w
(i)
t }

Ns
i=1

to approximate the posterior distribution p(xt|Yt). The state xt
is estimated as x̂t =

∑Ns

i=1 w
(i)
t x(i)

t .
The particle filter consists of two steps, one for state

prediction and the other for model update. The two steps
can be used to recursively estimate the posterior probability
according to the following two rules:

p(xt|Yt−1) =

∫
p(xt|xt−1)p(xt−1|Yt−1)dxt−1 , (1)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
. (2)

The integration in the estimation is simulated using particle
samples, which are drawn from some importance distribution
q(xt|Xt−1, Yt), and the weights of the particles should be
updated as

w
(i)
t = w

(i)
t−1

p(yt|xit)p(xit|xit−1)

q(xt|Xt−1, Yt)
. (3)

In our implementation, q(xt|Xt−1, Yt) = p(xt|xt−1), which is
a Gaussian distribution. The weight of a sample is equal to
p(yt|xt) after being updated, since the weights of particles are
equally weighted before being updated due to resampling.

In our tracking system, we use a 3D state space that
represents the position and scale of a target. Given a state x,
its corresponding observation y is collected by first cropping
a patch according to x and then normalizing the patch.
Then, within the particle filter framework, the tracking boils
down to estimate the observation likelihood p(yt|xt), which is
calculated as Equation (7) in §2.3.

2.2 Constrained non-negative matrix factorization
It is commonly agreed that the appearance model for tracking
targets should be able to reflect their variations across frames.
Subspace representation has been popular toward this end.
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In these methods, a target is usually treated as a linear
combination of a set of basis, which can be either in a
transferred low dimensional space (e.g. PCA) or in the original
intensity space (e.g., template). We follow the same philosophy
but seek more benefits from non-negativity constraint.

Let Y = [y1, y2, · · · , yn] ∈ Rm×n denote n target samples
(at different time), each with a dimension of m, we aim to
build a representation using a set of non-negative basis U =
[u1,u2, · · · ,up] ∈ Rm×p such that

Y ≈ UV , s.t. U ≥ 0 , V ≥ 0 , (4)

where V = [v1, v2, · · · , vn] ∈ Rp×n denotes the linear
coefficients for all samples. This is a standard non-negative
matrix factorization problem [22]. As has been demonstrated
in previous studies, such a representation naturally encodes
both the part structures through non-negative basis (U ≥ 0)
and the part composition through non-negative combination
(V ≥ 0).

Aside from the non-negativity, in the context of visual
tracking, we include the following constraints: (1) sparsity in
V , which has been shown to be effective for visual tracking
in [29], (2) smoothness constraint, which aims to preserve the
locality [14] on the manifold such that neighboring samples
in the original space should also be close in the new space
spanned by U , and (3) regularization on U .

Addressing all the above constraints, we have the following
(off line) objective function for the constrained NMF problem,

Eoff(U, V ;Y ) =‖Y − UV ‖2F + α
∑
i

‖vi‖21

+ β
∑
i>j

wi,j‖vi − vj‖22 + γ‖U‖2F ,
(5)

where wi,j is defined as follows:

wi,j =

{
1, yi ∈ Nk(yj) or yj ∈ Nk(yi)
0, otherwise

where Nk(yi) denotes the k nearest neighbors of yi. Eoff has
four terms: the first term tries to minimize the reconstruction
error; the second term is the sparsity penalty, weighted by α;
the third term is the smoothness constraint, similar with the
locality constraint on manifold [14], weighted by β; and the
last term is a regularizer weighted by γ. Note that to encourage
the sparseness the square of L1 norm is employed due to its
effectiveness and the efficiency of the resulting solution [17],
[36]. This objective function is different from the NMF on
manifold [8] in that we also consider the sparseness of the
coefficient matrix V . This is because we assume that each
point on the manifold can be represented by a sparse linear
combination of basis.

To learn the representation usually requires an offline learn-
ing algorithm, which minimizes Eoff(U, V ;Y ) with respect to
U and V ,

[Û , V̂ ] = arg min
U≥0,V≥0

Eoff(U, V ;Y ) . (6)

This is impractical for tracking due to the dynamically arrived
data in Y and computational complexity. Instead we propose
an efficient online solution described in §3.

2.3 Inference for visual tracking
In the tracking problem, our task is to estimate its observation
likelihood p(yi|x) in the particle filter framework. This is
derived from the distance, denoted as d(yi, U), from yi to
the target manifold with basis U . The distance d(yi, U) is
calculated by the minimum reconstruction error subject to a
sparsity constraint. Specifically, we first solve the following
regularized least square problem,

v̂i = argmin
vi≥0
‖yi − Uvi‖22 + α‖vi‖21 + β

∑
j<i

wi,j‖vj − vi‖22 .

Then we have d(yi, U) = ‖yi − U v̂i‖22 and

p(yi|x) ∝ exp{−Cd(yi, U)} , (7)

where C is a positive constant.

3 VISUAL TRACKING THROUGH ONLINE NMF
As mentioned in the previous section, the traditional offline
NMF learning algorithm is not applicable to visual tracking.
Recently, the online NMF algorithm has been proposed for
document analysis [9] and background modeling [7]. However,
it does not handle the sparsity and smoothness, which are very
important for tracking. For this reason, we design a novel
online solution, CONMF, to incrementally update the basis
U as new frame arrives.

3.1 Objective function for CONMF
Suppose we already have n samples Y , and now the (n+1)th

sample y ∈ Rm is coming. In tracking, it means that the
target in current frame is cropped using the estimated state
x as a training sample. The basis U ∈ Rm×p, which is the
appearance model the algorithm is going to learn, should be
updated based on y. If n = 0, we can initialize U to some
random positive matrix or by some offline algorithm which
may incorporate some prior information about the appearance
of the target.

To use the new sample to update U incrementally, we get
the (online) objective function of CONMF as follows:

Eon(U, v;Y, V, y) = ‖Y − UV ‖2F + λ‖y− Uv‖22
+α‖v‖21 + β

∑
i

wn+1,i‖v− vi‖22 + γ‖U‖2F , (8)

where v ∈ Rp is the approximation coefficient for y. The
parameters α, β, γ are the same as in the offline objective func-
tion. The parameter λ is used to determine how important the
new sample is. In our experiments, we set λ = 10 to emphasize
the appearance information from the new observation.

In the online tracking, it is generally impractical to store
all the samples Y in memory. This raises a problem when
calculating wn+1,i. Fortunately, we can reasonably relax this
requirement by observing that object appearance changes
smoothly over time. Based on this observation, we assume
that the object appearances in consecutive frames are similar to
each other. As a result, we relax the online objective function
Eon as following

E(U, v;Y, V, y) = ‖Y − UV ‖2F + λ‖y− Uv‖22
+ α‖v‖21 + β‖v− vn‖22 + γ‖U‖2F ,

(9)
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where vn is the approximation coefficient of sample yn,
which is cropped using the estimated state in last frame.
In this objective function, we only consider the smoothness
between two consecutive frames. Theoretically we can extend
the constraints to more consecutive frames, but practically we
observe no significant improvement in performance. Note that
from the definition in (9) it seems that we still need to store
V that contains coefficients of all previously seen samples.
Fortunately this is not the case as shown in the following
subsection.

3.2 Optimization

Now the task is to minimize the objective function E of
CONMF defined in (9). However, it is not convex with respect
to jointly U , and v. Similar with traditional NMF [23], we
devise an iterative approach that uses two steps to alternatively
update U and v. In the following, we use two notations in
describing the two steps: (1) Superscript “t” is used to indicate
the tth updating iteration; and (2) Subscript outside parenthesis
is used to indicate the element in the vector (or matrix), e.g.,
“(v)i” for the ith element of v and “(U)i,j” for the (i, j)th

element of U .

3.2.1 Step 1: Fix U , update v

First, we fix the basis U , and update v to decrease the objective
function.

argmin
v≥0
E(U, v;Y, V, y)

= argmin
v≥0

λ‖y− Uv‖22 + α‖v‖21 + β‖v− vn‖22

= argmin
v≥0
‖y− Uv‖22 + α′‖v‖21 + β′‖v‖22 − 2β′v>vn

= argmin
v≥0

∥∥∥∥∥∥
 y

0
0p×1

−
 U√

α′11×p√
β′Ip

 v

∥∥∥∥∥∥
2

2

− 2β′v>vn

= argmin
v≥0
‖y′ − U ′v‖22 − 2β′v>vn , (10)

where α′ = α/λ, β′ = β/λ, y′ =
[
y>, 0,01×p

]>
, U ′ =[

U>,
√
α′1p×1,

√
β′Ip

]>
, and Ip is the identity matrix of size

p.
Denote E ′(v) = ‖y′ − U ′v‖22 − 2β′v>vn, its gradient is

∇E ′ = −2U ′>y′ + 2U ′>U ′v− 2βvn . (11)

To minimize E ′, we use an iterative algorithm inspired by
the work in [23]. The algorithm is based on the following
theorem and definition:
Definition 1: [23] G(v; v′) is an auxiliary function for F (v)
if G(v; v′) satisfies the following two conditions

G(v; v′) ≥ F (v) , G(v; v) = F (v) . (12)

Lemma 1: [23] If G is an auxiliary function, then F is
nonincreasing under the update

vt+1 = argmin
v
G(v; vt) . (13)

Theorem 1: Let K(vt) be the diagonal matrix such that
(K(vt))i,j = δij(U

′>U ′vt)i/(vt)i, then

G(v; vt) = E ′(vt) + (v− vt)∇E ′(vt)
+(v− vt)>K(vt)(v− vt) (14)

is an auxiliary function for E ′(v).
Proof:

For the first condition in (12), we have obviously G(v, v) =
E ′(v).

For the second condition, the proof of G(v; vt) ≥ F (v) is
the same as in [23], since the only difference between our
objective function and the one in [23] is in ∇E ′(v). �

So, according to Lemma 1, we can update v in the following
way:

vt+1 = argmin
v
G(v; vt) .

Specifically, for the ith element we have the following update
rule:

(vt+1)i=(vt)i −
1

2
(K(vt)−1∇E ′(vt))i

=(vt)i −
(vt)i

(U ′>U ′vt)i
(−U ′>y′ + U ′>U ′v− β′vn)i

=(vt)i
(U ′>y′)i + β′(vn)i

(U ′>U ′vt)i
. (15)

The nonnegativity constraint naturally holds. Note here
U ′>y′ = U>y and U ′>U ′ = U>U + α′1p×p + β′Ip.

3.2.2 Step 2: Fix v, update U
Now we fix v, update non-negative basis U to decrease the
objective function. We have

argmin
U≥0
E(U, v;Y, V, y)

= argmin
U≥0
‖Y − UV ‖2F + λ‖y− Uv‖22 + γ‖U‖2F

= argmin
U≥0
‖[Y,
√
λy]− U [V,

√
λv]‖2F + ‖√γU‖2F

= argmin
U≥0
‖[Y,
√
λy, 0m×p]− U [V,

√
λv,
√
γIp]‖2F

= argmin
U≥0
‖Y ′ − UV ′‖2F , (16)

where Y ′ = [Y,
√
λy, 0m×p] and V ′ = [V,

√
λv,√γIp]. This is

now part of a standard NMF problem. We can therefore update
U using the traditional NMF updating rule [22]. Specifically,
for each element (U)i,j ,

(U)i,j = (U)i,j
(Y ′V ′

>
)i,j

(UV ′V ′>)i,j
. (17)

Note Y ′V ′> = Y V >+λyv> and V ′V ′> = V V >+λvv>+γI,
where Y V > and V V > do not change in the iteration for the
sample at time n+ 1. This enables us to use values of Y V >

and V V > directly without storing all individual vi for i =
1, 2, · · · , n. Similar to traditional NMF, this updating rule can
be applied multiple times. In our experiments, applying this
updating rule one time per frame is enough, which probably
results from the fact that a single sample usually changes U
slightly.
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3.2.3 Convergence analysis
The objective function has an obvious lower bound 0. Both
updating rules for U and v are non-increasing for the ob-
jective function. Consequently, the optimization converges. In
practice, we observed that it usually takes no more than 10
iterations. Also, the stationary point of the updating rules (15)
and (17) is the Karush-Kuhn-Tucker (KKT) point for equation
(9) (see Appendix for proof).

3.2.4 Complexity analysis
As an online algorithm, it is important that the complexity
of algorithm in each frame does not increase over time. It is
obviously that the time complexity of our algorithm does not
depend on the time instance n.

For the space complexity, in the nth frame, the proposed
algorithm only needs to store the basis U , the current sample
y, the current coefficient vector v, the neighboring sample
coefficient vector vn−1, parameters α, β, γ, λ, and V V >,
Y V > for the updating rules. Note VnV >n = Vn−1V

>
n−1 + vv>

and YnV
>
n = Yn−1V

>
n−1 + yv>, where subscript n or n − 1

indicates the status of V and Y at time n or n−1. In this way,
the algorithm maintains V V > ∈ Rp×p and Y V > ∈ Rm×p.
Also, given V V > and Y V >, the algorithm does not need V
and Y any more. Therefore, the memory cost does not depend
on n, and thus it keeps constant over time, which means once
the proposed algorithm is assigned some space at the initial
frame, it does not require any additional space later.

3.3 Tracking algorithm
Combining the CONMF for target representation with the
particle framework, we summarize the proposed NMF-Tracker
in Algorithm 1.

Algorithm 1 NMF-Tracker
1: Initialize U in the first frame (U may incorporate some

prior knowledge)
2: for each following frame do
3: Draw sample particles
4: for each particle x do
5: Prepare observation y for x
6: Compute the likelihood p(y|x) using (7)
7: Update the particle weight
8: end for
9: Estimate the state of the object

10: Get the tracking sample y
11: Update the U by minimizing E(U, v;Y, V, y)
12: Update auxiliary variables V V >, Y V >

13: Propagate samples with resampling
14: end for

4 EXPERIMENTS

To evaluate the performance of the proposed algorithm, we
collected a set of videos, including both indoor and outdoor
scenes where the targets undergo scale, pose change, illumi-
nation variation, and occlusions.

4.1 Settings
The proposed CONMF for sparse non-negative representation
on manifold is embedded into the particle filter tracking
framework. One of the goals of this work is to demonstrate that
using CONMF results in a more robust and stable tracker. For
this reason, the parameters of NMF-Tracker are set as: λ, α, β
and γ are fixed at 10, 1, 100 and 0.01 for all experiments. The
number of iterations for the computation of coefficient vector
over the learned basis U for each particle is set to 10. This
is enough for all our testing video sequences. Note that, for
sequence car4, we found that it needs only one iteration to
converge. 100 particles are used to propagate the probability
distribution of the target state for all the videos except girl,
for which 300 particles are used since the variation is greater
there. For fast convergence, the initial value of coefficient
vector of each particle is set as the coefficient vector of the
estimated state of the target in the previous frame. In practice,
we find that it needs much more iteration steps (at least tens
of thousands) to generate the part-based basis images like the
templates shown in Fig.1. Due to the computation efficiency,
we set the maximum number of iterations to be 300. Although
the final templates are not too sparse, this does not affect
the performance much. Our experiments were performed on
ten publicly available video sequences, as well as two of our
own. In our mixed Matlab/C implementation, our tracker runs
about 150 frames per second on a PC with Intel i7-2600 CPU
(3.4GHz, 50% CPU usage), using sequence car4.

The proposed NMF-Tracker is compared with eight state-
of-the-art trackers: GKT tracker [35], OAB tracker [12], color
based probabilistic tracker(CBPT) [33], MIL tracker [3], VTD
tracker [20], IVT tracker [34], L1 tracker [5], and ICTL
tracker [40], [41]. For all the compared trackers, we use the
publicly available codes or the codes from the original authors
and the same parameters are used as the authors.

4.2 Tracking results
In this subsection, we show some tracking results of our pro-
posed tracker and the comparison results with other trackers
will be illustrated in the followed two subsections.

The results on sequence mhyang is illustrated in Figure 2
[34]. The illumination of the target changes frequently (#414,
#710, #1100) and our tracker can adaptively update the model
for these variations.

The intensity of the singer [20] in Figure 3 changes
dramatically (#85, #113) and the scale is also with large
variations. Due to the proposed appearance model and the
particle filter tracking technique, our tracker can follow the
target throughout the sequence.

The sequence redteam is got from [46]. As shown in
Figure 4, the car is with frequent scale variations and small
occlusions. Our tracker can successfully recover the scale and
follow the target.

Figure 5 illustrates the results on dog [34]. The pose of the
target changes frequently (#102, #171, #599) and the CONMF
can learn these poses into the appearance model. Also, the
scale of the target changes a lot (#1002, #1334) and our tracker
can estimate the state of target accurately.
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#2 #285 #414 #665 #710 #1100

Fig. 2. Tracking results of the NMF-Tracker on mhyang.

#2 #85 #113 #155 #242 #351

Fig. 3. Tracking results of the NMF-Tracker on singer.

#2 #135 #317 #470 #550 #700

Fig. 4. Tracking results of the NMF-Tracker on redteam.

#2 #102 #171 #599 #1002 #1334

Fig. 5. Tracking results of the NMF-Tracker on dog.

#260 #920 #1714 #2356 #2637 #2983

Fig. 6. Tracking results of the NMF-Tracker on doll.

doll [30] is a very long sequence which lasts around 3000
frames and we use this sequence to test if our tracker is
qualified for the long-term tracking. As shown in Figure
6, the target is undergoing large scale variations (#920),
occlusions (#1714, #2637, #2983) and pose changes (#260,
#2356). Our tracker can handle these challenging conditions
and successfully track the target throughout the sequence.

4.2.1 Tracking results with different constraints
In this subsection we illustrate the effect of different con-
straints in Equation (9) using sequence dudek [16]. Figure
7 shows the results for the trackers with different constraints.
The tracking results of the tracker with all the constraints are
shown with red rectangle, the ones without smoothness and
sparseness are shown with blue (β = 0) and yellow (α = 0)
respectively, and green represents the tracker without all the
constraints (α = 0, β = 0, γ = 0). As shown in this figure,
the trackers without constraints fail to track the target due to
the background clutter (#738) and pose changes (#755). While
the tracker with all the constraints can successfully follow the

target throughout the sequence.

4.3 Qualitative comparison

In this subsection, we qualitatively compare the tracking re-
sults of our proposed NMF-Tracker together with other track-
ers. To avoid clutter, only five methods are given exemplary
image illustration: proposed NMF-Tracker (red), IVT(blue),
ICTL (yellow), L1 (green) and MIL (purple). The results of
other compared trackers are listed in the following quantitative
subsection. We first tested our algorithm using the sequence,
car4, which presents challenging lighting and scale variation.
The car undergoes drastic illumination changes as it passes
beneath a bridge and under trees. Tracking results on some
frames are demonstrated in Figure 8, from which we can see
that the proposed algorithm can track the target robustly.

In sequence david [34], a person moves from a dark
room toward a bright area while changing his pose, facial
expressions and taking off his glasses. Notice that there is
also a large scale variation in the target relative to the camera.
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#548 #654 #738 #755 #819 #869

Fig. 7. The results of our tracker with different constraints on dudek. Red: with all the constraints. Blue: without
smoothness (β = 0). Yellow: without sparseness (α = 0). Green: without all the constraints (α = 0, β = 0, γ = 0).

#21 #166 #211 #241 #305 #641

Fig. 8. Comparison results on car4. Red: proposed NMF-Tracker, Blue: IVT, Yellow: ICTL, Green: L1, Purple: MIL.

#10 #118 #155 #306 #390 #462

Fig. 9. Comparison results on david. Red: proposed NMF-Tracker, Blue: IVT, Yellow: ICTL, Green: L1, Purple: MIL.

#10 #81 #97 #119 #433 #463

Fig. 10. Comparison results on girl. Red: proposed NMF-Tracker, Blue: IVT, Yellow: ICTL, Green: L1, Purple: MIL.

The results are shown in Figure 9. Our algorithm is able to
track the target throughout the sequence.

In the first two sequences, NMF-Tracker is comparable to
best performed tracker IVT [34] as shown in 1, but the number
of particles employed in our tracker is 80% less than that used
in IVT.

Figure 10 shows the results for sequence girl [6] which
contains a girl moving in different pose, scale and occlusion.
Once initialized in the first frame, our algorithm is able to track
the target object accurately as it experiences 360 degree out of
plane rotation, long-term severe occlusion and scale variation,
while all other four algorithms are more or less inaccurate,
especially when there is rotation(#119) or occlusion(#433). L1
tracker is also accurate when there is occlusion, however, it is
not as accurate when there is rotation(#81).

The tracking results on the sequence ped are shown in
Figure 11. The pedestrian’s appearance is changing over time
and experiences a short time partial occlusion by a pole. Again,
our method obtains good tracking results. Besides, MIL and
ICTL can also track the target accurately, while other trackers
drift apart and get stuck to the background.

Figure 12 shows the comparison results on the sequence
boy, whose pose is changing quickly and frequently. Motion
blur occasionally happens, which could jeopardize image

features temporarily. The results show that our algorithm
faithfully models the appearance of the target and is able to
track the target in the presence of motion blur.

We finally test our algorithm on a very challenging sequence
car, which is cropped from a movie. The target undergoes
dramatical scale variation and partial occlusion, and the results
are shown in Figure 13, from which we can see that our
NMF-Tracker adapts to the scale change and occlusion very
well(#166,#175). In comparison, other trackers meet problems
when there are occlusions or scale changes.

4.4 Quantitative evaluation
Here we quantitatively compare NMF-Tracker with all the
eight trackers mentioned above. For all sequences used, we
manually labeled the ground truth bounding box of the target
in each frame.

The first quantitative criterion to evaluate the performance
is the center error, which is defined as the Euclidean distance
between the center of tracking result and the center of the
ground truth bounding box. The quantitative errors are shown
in Figure 14, with one subfigure per sequence. Our NMF-
Tracker is represented by red line, and the results show that
in all testing sequences NMF-Tracker performs better than or
tiers the best of the state-of-the-art algorithms.
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#1421 #1496 #1499 #1506 #1661 #1823

Fig. 11. Comparison results on ped. Red: proposed NMF-Tracker, Blue: IVT, Yellow: ICTL, Green: L1, Purple: MIL.

#16 #118 #128 #256 #382 #555

Fig. 12. Comparison results on boy. Red: proposed NMF-Tracker, Blue: IVT, Yellow: ICTL, Green: L1, Purple: MIL.

#22 #92 #162 #178 #187 #195

Fig. 13. Comparison results on car. Red: proposed NMF-Tracker, Blue: IVT, Yellow: ICTL, Green: L1, Purple: MIL.

Alg. car4 david girl ped. boy car ave.
GKT 121.3 65.8 9.4 18.2 50.7 140.0 67.5
MIL 49.4 25.5 12.1 5.2 7.7 16.7 19.4
OAB 53.4 22.9 8.6 7.3 10.5 26.3 21.5
CBPT 45.1 92.4 7.3 5.8 38.9 25.5 35.8
ICTL 20.6 44.6 10.5 5.6 22.2 22.5 21.0
VTD 19.5 7 2.7 37.4 2.5 34.0 17.1
IVT 3.9 3.5 25.4 398.8 28.6 17.1 79.5
L1 5.8 19.1 5.1 4.5 3.7 18.3 9.4

NMF 6.1 4.5 4.3 4.4 3.3 16.3 6.4
TABLE 1

The mean tracking errors measured using the Euclidian
distance between center points. The last column is the

average over all sequences.

The second quantitative criterion employed for evaluation
is the average center error, which is defined as the average
of center error over all the frames of a given sequence. The
evaluation results are listed in Table 1. For the first five
sequences, average center errors of NMF-Tracker are 6.1, 4.5,
4.3, 4.4 and 3.3 respectively, which are small enough. For the
last challenging sequence car, our tracker gains an average
center error of 16.3, which is not ideal, however, it is still
the best one among all the algorithms we compared. These
statistical results again verify that NMF-Tracker outperforms
or ties the best of the state-of-the-art trackers.

4.5 Discussion
Our proposed approach achieves robust tracking performance
by efficiently integrating new information into the appearance
model. The combination of NMF with the sparsity, smooth-
ness, and temporal continuity constraints makes the proposed
NMF-Tracker robust under different tracking environments.
Furthermore, the online algorithm brings great run-time ef-
ficiency. That said, there are challenging cases our tracker

meets problems, such as when dealing with full or long
term occlusion, dramatical non-rigid motion, abrupt motion or
moving out of the frame, etc. Figure 15 shows some example
images of challenging sequences where the proposed tracker
performs poorly.

To further improve the robustness of the proposed tracker,
the fragment-based representation can be adopted, which has
been verified to be robust to the partial occlusion [1]. Some
advanced motion models [20] can also be employed to handle
the abrupt motion cases. Furthermore, the generative model
adopted in our tracker can be further enhanced by cooperating
with the discriminative model, which has been proved to be
effective for tracking in [47].

5 CONCLUSION

This paper proposes an efficient tracker based on the sparse
non-negative matrix factorization. Instead of traditional offline
learning, we design an online algorithm, CONMF, which
incrementally learns the nonnegative basis for object represen-
tation. This new representation enables the proposed tracker to
adapt to severe appearance changes over time. Moreover, the
tracker is very efficient even when we take into consideration
of the sparseness and smoothness (on manifold) constraints.
The experimental results show that the proposed algorithm is
able to track target accurately with challenging appearance
variations.

APPENDIX

Introducing Lagrangian multipliers η ∈ Rm×p and θ ∈ Rp×n,
we have
J (U, v;Y, V, y) = ‖Y − UV ‖2F + λ‖y− Uv‖22 + α‖v‖21

+β‖v− vn‖22 + γ‖U‖2F − tr(ηU>)− tr(θV >) .

Taking derivatives, we have
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Fig. 14. Quantitative Errors (in Pixels).

(a) soccer [20] (b) matrix [19] (c) diving [18] (d) woman [1]

Fig. 15. Challenging sequences to our tracker. The images in (a)-(c) are cropped for better illustration. The targets
are indicated by the red bounding boxes.

∂J
∂U

=2(UV V >− Y V >+ λUvv>− λyv>+ γU)− η ,
∂J
∂v

=−2(λU>y + λU>Uv + α‖v‖11p×1+βv− βvn)−θ .

Setting ∂J
∂U = 0 and ∂J

∂v = 0, we have
η = 2UV V > − 2Y V > + 2λUvv> − 2λyv> + 2γU ,
θ = −2λU>y + 2λU>Uv + 2α‖v‖11p×1 + 2βv− 2βvn .

Then, the KKT condition requires
2(UV V > − Y V > + λUvv> − λyv> + γU)i,jUi,j = 0 ,
2(−λU>y + λU>Uv + α‖v‖11p×1 + βv− βvn)ivi = 0 .

The stationary point of the updating rule (15) is
vi = vi (U ′>y′)i+β′(vn)i

(U ′>U ′v)i
So the condition below should hold:

vi[(U ′>y′)i + β′(vn)i − (U ′>U ′v)i] = 0
vi[(U>y)i + β′(vn)i − ((U>U + α′1p×p + β′Ip)v)i] = 0
vi(U>y + β′vn − U>Uv− α′‖v‖11p×1 − β′v)i = 0

where α′ = α/λ and β′ = β/λ.

The stationary point of the updating rule (17) is

(U)i,j = (U)i,j
(Y ′V ′>)i,j

(UV ′V ′>)i,j
The following condition should hold:
(U)i,j [(Y

′V ′
>
)i,j − (UV ′V ′

>
)i,j ] = 0

(U)i,j [(Y V
>+λyv>)i,j−(U(V V >+ λvv>+γI))i,j ]=0

(U)i,j(Y V
> + λyv> − UV V > − λUvv> − γU)i,j = 0

We find that the stationary point satisfies the KKT condition
by comparing them.
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