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Abstract

Estimating blood flow speed is essential in many medi-
cal and physiological applications, yet it is extremely chal-
lenging due to complex vascular structure and flow dynam-
ics, particularly for cerebral cortex regions. Existing tech-
niques, such as Optical Doppler Tomography (ODT), gen-
erally require complex hardware control and signal pro-
cessing, and still suffer from inherent system-level artifacts.
To address these challenges, we propose a new learning-
based approach named OCTA-Flow, which directly esti-
mates vascular blood flow speed from Optical Coherence
Tomography Angiography (OCTA) images that are com-
monly used for vascular structure analysis. OCTA-Flow
employs several novel components to achieve this goal.
First, using an encoder-decoder architecture, OCTA-Flow
leverages ODT data as pseudo labels during training, thus
bypassing the difficulty of collecting ground truth data. Sec-
ond, to capture the relationship between vessels of varying
scales and their flow speed, we design an Adaptive Window
Fusion module that employs multiscale window attention.
Third, to mitigate ODT artifacts, we incorporate a Con-
ditional Random Field Decoder that promotes smoothness
and consistency in the estimated blood flow. Together, these
innovations enable OCTA-Flow to effectively produce ac-
curate flow estimation, suppress the artifacts in ODT, and
enhance practicality, benefiting from the established tech-
niques of OCTA data acquisition. The code and data are
available at https://github.com/Spritea/OCTA-Flow.

1. Introduction
Blood flow speed measurement provides insights into vas-
cular health and functions [16, 28, 31, 38] that are critical
in medical and physiological research. However, precise
blood flow speed measurement is extremely challenging in

*Corresponding author.

Animal preparation

OCTA scan

Blood flow data (ODT)

OCTA vascular image

Deep neural network

Blood flow estimation

Blood flow measurement

Michelson 
interferometer

Current process
Slow 
Complex 
High cost 
Immature 
Artifacts 

Proposed OCTA-Flow
Faster 
Simpler 
More accessible 
Clinically approved 
Consistent 

Figure 1. Current blood flow measurement process (left) is slow,
complex, costly, immature for clinical use, often suffering from
system-level artifacts (highlighted by arrows in zoomed-in pan-
els). In contrast, the proposed OCTA-Flow (right) is faster, sim-
pler, and more accessible by leveraging the clinically approved
OCTA technique while mitigating artifacts and generating consis-
tent estimations. Blood flow results are visualized in colormap.

practice [40] due to complex vascular structure and flow dy-
namics, especially for cerebral cortex regions, where vessel
architecture is highly intricate, and sizes vary largely [41].

Existing blood flow (referring to speed in this work)
measurement techniques are complex and prone to system-
level artifacts that affect accuracy [11]. For example, Opti-
cal Doppler Tomography (ODT) is costly, requires precise
hardware control, and involves complex signal processing
[43]. Moreover, ODT is affected by angle artifacts when
the light is nearly perpendicular to the vessel, causing arti-
facts that show drastic flow changes and even disruptions in
vessel structures [39, 45] (see blue arrows and green arrows
respectively in the zoomed-in panels of Fig. 1).



Driven by the above observation, we propose a novel
solution, named OCTA-Flow, which leverages the power
of modern deep learning techniques and the practicality of
the Optical Coherence Tomography Angiography (OCTA)
technique. As shown in Fig. 1, OCTA-Flow directly esti-
mates flow speed from an input OCTA image, suppresses
the artifacts in ODT, and enjoys the practicality of estab-
lished OCTA acquisition techniques.

It is worth noting that, despite being popularly used
in clinical and biomedical research for analyzing vascular
structures [12, 18], OCTA is not designed for blood flow es-
timation. At first glance, the vascular structure information
in OCTA images provides little/limited clue about the flow
speed. However, as we will show later, the prior knowledge
of hemodynamics [2, 29] encoded (implicitly and noisily)
in OCTA, when combined with carefully designed learning
architecture, can serve as an effective flow estimator.

With the above motivation, we develop several novel
components in OCTA-Flow for estimating blood flow
speed. First, OCTA-Flow employs an encoder-decoder ar-
chitecture for flow estimation. A primary challenge is the
absence of ground truth flow data for model training. To
address this, we use the noisy flow estimations from ODT
as pseudo labels for supervision. Specifically, we construct
datasets containing paired high-resolution OCTA and ODT
data from the mouse cerebral cortex, which features com-
plex vascular structures. Second, an Adaptive Window
Fusion (AWF) module is designed to capture the correla-
tion between vessels of varying scales and their flow speed.
AWF uses multiple window attention blocks [23] with vary-
ing window sizes to extract features at different scales, and
then applies automatically generated weights to adaptive
feature fusion. This way, it effectively adapts to the vascu-
lar distribution across different OCTA images and handles
the large variation of different vascular structures. Third, a
Conditional Random Field Decoder (CRFD) is incorporated
to ensure the smoothness in blood flow and meanwhile mit-
igate artifacts in ODT data (during training). CRFD mod-
els the relationship among multilevel features and optimizes
both the relationship and features to improve the smooth-
ness of blood flow estimation.

For evaluation, we collected two real datasets in vivo
from the mouse cerebral cortex. Experiments on both
datasets demonstrate that OCTA-Flow not only produces
accurate flow estimations but also avoids the angle arti-
facts present in ODT measurements. We believe this work
can inspire researchers to explore this emerging field with
significant practical value, as it has the potential to make
blood flow measurement more accessible and further im-
prove measurement accuracy.

In summary, our contributions are as follows.
• We propose OCTA-Flow, a novel solution for blood flow

estimation that directly predicts blood flow from OCTA

images. In addition to providing high-quality flow estima-
tion, OCTA-Flow bypasses the need for costly and prac-
tically challenging measurement techniques like ODT.

• We propose using ODT data as pseudo labels for blood
flow of OCTA images during training, addressing the lack
of ideal ground truth blood flow speed measurement data.

• We propose an Adaptive Window Fusion module, which
captures the correlation between vessels at different
scales and their corresponding blood flow speed by mul-
tiple window attention blocks and adaptive integration.

• We introduce the Conditional Random Field Decoder to
enforce flow estimation smoothness and mitigate ODT ar-
tifacts by modeling multilevel feature relationships.

• We build datasets of paired OCTA and ODT images with
varied characteristics, which are collected under different
animal conditions.

• Experiments show that our method generates accurate
flow estimations from OCTA images, outperforms alter-
native methods, and mitigates artifacts in ODT data.

2. Related Work

2.1. Blood Flow Speed Measurement
Blood flow speed measurement is crucial in biomedical re-
search but typically requires costly hardware, complex op-
erations, and advanced signal processing [11, 40]. Com-
mon techniques include Doppler Ultrasound [30], Phase-
Contrast MRI [8], and Optical Doppler Tomography [5, 19].
Doppler Ultrasound and MRI detect blood flow in thick
tissues but lack the resolution for high-precision measure-
ments. ODT offers high-resolution capillary imaging but
suffers from artifacts, leading to inconsistent and underesti-
mated results, limiting clinical use [43, 44].

To bypass these issues of existing blood flow measure-
ments, our work seeks an alternative solution by directly
predicting blood flow from OCTA images, while using
ODT data as pseudo label during model training.

2.2. Optical Coherence Tomography Angiography
Optical Coherence Tomography Angiography (OCTA) is
widely used in clinical and biomedical research [12, 18].
OCTA uses speckle decorrelation to distinguish between
vessels and surrounding tissues, where vasculature gener-
ally has higher intensity variance across frames than the
static tissue, due to the moving red blood cells [33].

Despite its success in vascular structure analysis, OCTA
is not designed for blood flow estimation. Typically, a spe-
cialized blood flow measurement technique like ODT is
additionally used to obtain flow information, where data
from both modalities are utilized for physiology study [26].
Although recent works [1, 10] have attempted to estimate
blood flow using OCTA, they rely on raw signals with statis-
tical models, require specialized OCT systems, and gener-



ally produce less accurate results than dedicated blood flow
measurement techniques. To our best knowledge, our work
is the first to directly estimate blood flow speed from OCTA
images using generic OCT systems, which is expected to
open a new door for the task.

2.3. Deep Regression and Pseudo Labels
Regression is a fundamental task for machine learning.
Deep learning-based regression methods have demonstrated
their advantage on various regression problems, including
age estimation [25], crowd counting [3], human pose esti-
mation [35], and depth estimation [24]. Motivated by the
strong learning ability of deep models on complex patterns,
we formulate the blood flow estimation in a regression form
and develop a deep model to tackle the problem.

Pseudo labels are typically used in problems where the
perfect ground truth data is not available, such as weakly-
supervised learning problems [20]. Pseudo labels enable
models to learn from more samples without ideal labels,
improving their performance and generalization. Here we
adopt the ODT flow data as the pseudo labels, which contain
valuable fine-grained flow information. Despite the pres-
ence of artifacts, this approach enables us to leverage the
inherent common characteristics of blood flow data.

3. OCTA-Flow
3.1. Problem Formulation
Formally, during inference, given an OCTA image I ∈
RH×W of size H × W , the task of blood flow estimation
is to learn a flow estimation model Fθ that directly esti-
mates the pixel-wise blood flow speed Y ∈ RH×W by
Y = Fθ(I), where θ represents parameters of F .

To train the model Fθ, given a set of K paired OCTA-
ODT images {Ik, Y k}Kk=1, with the ODT data Y k ∈
RH×W as the pseudo label for Ik, the model learns to mini-
mize the discrepancy between Y k and estimated blood flow
Yk = Fθ(Ik) by:

min
θ

K∑
k=1

L(Fθ(Ik), Y k), (1)

where L(·) is the loss function measuring the discrepancy
explained in Sec. 3.5.

3.2. Overview of OCTA-Flow
The overview of the proposed OCTA-Flow is shown in
Fig. 2. It has an encoder-decoder like pipeline. A multi-
stage backbone network E (Swin Transformer [23]) serves
as the encoder to extract multilevel features, denoted by:

B = {B0, B1, B2, B3} = E(I), (2)

where Bi ∈ RHi×Wi×Ci , i ∈ {0, 1, 2, 3}, are the multilevel
features extracted from blocks of different depths. Then the
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Figure 2. Overview of OCTA-Flow. Our model directly estimates
pixel-wise blood flow speed from a given OCTA image during in-
ference. ODT data is only used as the pseudo label during the
training process.

deep feature B3 is fed to the proposed Adaptive Window
Fusion module W to extract adaptive multiscale context in-
formation to handle vasculature of various sizes, denoted
by:

R0 = W(B3) ∈ RH3×W3×CR
0 , (3)

where CR
0 is the channel number of R0. Next, the intro-

duced Conditional Random Field Decoder D captures the
relation of these multilevel features, and enforces smooth-
ness in the prediction results, leading to:

R3 = D(B, R0) ∈ RH0×W0 . (4)

Finally, R3 is upscaled with bilinear upsampling to get the
pixel-wise blood flow speed estimation Y ∈ RH×W corre-
sponding to the OCTA input image I .

3.3. Adaptive Window Fusion
The vascular system in animals exhibits a remarkable com-
plexity in structure, especially on vessel size. For instance,
the mouse cerebral cortex contains vascular structures of
varying sizes, such as large pial vessels, medium-sized ar-
teries and veins, and small capillaries. Vessels of different
sizes exhibit distinct blood flow speed patterns, since vessel
size significantly impacts blood flow speed [2].

To capture the relation between vessels of varying sizes
and their blood flow speed, it is essential to incorporate
multiscale contextual information. Hence, we propose the
Adaptive Window Fusion module, which extracts multi-
scale context information and integrates them conditioned



on the input adaptively. This adaptive fusion process tailors
the feature integration to the specific characteristics of each
input, enhancing the ability to capture the relation between
diverse vascular structures and the blood flow speed. Fig. 3
shows this module’s structure. This module is composed of
two parts, one for multiscale context information extraction,
and the other for adaptive feature integration.

Window-based Context Extraction. We propose to utilize
the window attention mechanism [23] with varying win-
dow sizes to capture multiscale context information from
the deep features. The small window focuses on local de-
tails and captures fine-grained structures, while the large
window attends to a wider area and provides more holistic
information. Formally, the process is expressed as

Mi = Wi(B3), i ∈ {1, 2, 3}. (5)

Here Wi is the window attention blocks with window size
of wi × wi, i ∈ {1, 2, 3}. B3 ∈ RH3×W3×C3 is the in-
put deep feature, and M1,M2,M3 ∈ RH3×W3×CR

0 are the
extracted multiscale context information.

For each window attention block, since the regular
window-based attention focuses on each non-overlapping
window itself, to bridge and provide connection of win-
dows, the shifted-window attention [23] is further applied
following the regular window-based attention. Formally,
the window attention block Wi, i ∈ {1, 2, 3}, consists of
consecutive operations below:

M̂i = W-MSAi(LN(B3)) +B3,

Mi = MLP(LN(M̂i)) + M̂i,

M̃i = SW-MSAi(LN(Mi)) +Mi,

Mi = MLP(LN(M̃i)) + M̃i.

(6)

Here W-MSAi, SW-MSAi refer to the regular window
multi-head self-attention and the shifted window multi-head
self-attention with window size of wi×wi respectively. LN
and MLP refer to layer norm and multilayer perceptron.

This window-based multiscale context information ex-
traction method enjoys multiple key advantages, compared
with the widely used pyramid pooling method [48]. (1)
Our method keeps more complete information than pyramid
pooling. The window attention mechanism maintains infor-
mation for every element in the input, while the pooling
method only keeps local maximum, resulting in inevitable
information loss, especially on details like small vessels. (2)
As an attention mechanism [37], window attention automat-
ically adjusts the feature weights based on the input vascu-
lature feature, focusing on important regions and features,
while the pyramid pooling, as a non-parametric method,
uses fixed-scale pooling operations, which are much less
adaptive to content and cannot adjust focus accordingly.
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Figure 3. The Adaptive Window Fusion module. This module
extracts multiscale context information with window attention,
and adaptively integrates them with dynamically generated fine-
grained spatial attention weights conditioned on the input. BiCRF
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Figure 4. The Hierarchical CRF block. This block models the
interdependencies between multilevel features hierarchically, en-
forcing consistent and smooth blood flow estimation results.

(3) Window attention with shifting enables efficient infor-
mation flow and interaction across different windows, and
blends them naturally. In contrast, pyramid pooling typ-
ically extracts features of each pooling window indepen-
dently, lacking interaction across pooling windows.

Adaptive Feature Integration. The biological and
anatomical study [41] shows that the vascular structure dif-
fers across regions and individuals, due to metabolic and
functional differences. Therefore, we emphasize that the
vessel feature integration should be content-aware, depend-
ing on the specific vasculature characteristics of the input.
Here we propose an adaptive method to integrate multi-
scale context information dynamically, conditioned on the
input vasculature feature. This enables content-aware fu-
sion, which fusion with fixed weights [48] cannot achieve.

Specifically, for the input content B3, a convolutional



gate G is applied to generate the feature weight combination
G dynamically. The weight combination is split by channel
to obtain three single-channel weights G1, G2, G3, for mul-
tiscale context features respectively. Then the weighted sum
is performed to combine all context features, which forms
the module’s output R0. Formally, the process is:

G = G(B3), (G1, G2, G3) = SP(G),

R0 = G1 ⊙M1 +G2 ⊙M2 +G3 ⊙M3.
(7)

Here B3 ∈ RH3×W3×C3 , G ∈ RH3×W3×3, G1, G2, G3 ∈
RH3×W3 , and SP refers to the channel splitting operation,
which extracts every channel of G as the weights. ⊙ denotes
the element-wise multiplication with broadcasting, where
Gi, i ∈ {1, 2, 3} is changed from single channel to CR

0

channels by repeating on the channel-axis before perform-
ing element-wise multiplication.

Instead of predicting a scalar weight, which multiplies
the context feature elements with a same number, we gen-
erate a weight matrix Gi. It can be regarded as the spa-
tial attention weight [4], which assigns a unique weight to
each element in the spatial dimensions of the context fea-
ture. This achieves a more refined attention mechanism that
can selectively emphasize or suppress specific regions of the
context feature based on the input vasculature feature in the
fusion process.

Based on the above process, we provide a robust mecha-
nism for content-aware, multiscale context feature integra-
tion. It offers adaptive and fine-grained feature fusion, tai-
lored to the unique characteristics of the input vasculature.
Combined with the window-based multiscale context ex-
traction method, they enhance the model’s capacity to rec-
ognize diverse vascular structures, and capture the correla-
tion between them and the blood flow speed.

3.4. Conditional Random Field Decoder
Conditional Random Field (CRF) [36] is a probabilistic
model for structured prediction problems, where the out-
puts are interdependent rather than independent. It models
the relation between the node and its adjacent nodes in a
graph, and infers the result by considering these relations
comprehensively, leading to consistent and smooth results.

Given that blood flow at a certain position is closely re-
lated to its neighbor areas and should exhibit local continu-
ity [2], we propose the Conditional Random Field Decoder
(CRFD), inspired by the robust relational modeling capa-
bilities of CRF. The CRF Decoder captures the interdepen-
dencies of multilevel features in the form of CRF. By jointly
optimizing both the feature relationships and the feature val-
ues through backpropagation, this approach enhances the
smoothness and accuracy of blood flow estimation.

Hierarchical CRF block. To model the relation of mul-
tilevel features, we propose the Hierarchical CRF (HiCRF)

block. Fig. 4 shows its structure. It takes three features from
different levels, and models the relation between them pro-
gressively and hierarchically. Specifically, given low level
feature Bi−1 ∈ RHi−1×Wi−1×Ci−1 , and middle level fea-
ture Bi ∈ RHi×Wi×Ci from the backbone network, and
high level feature Rj ∈ RHi×Wi×CR

j , j ∈ {0, 1, 2}, from
the previous HiCRF block (or AWF for R0), we model the
relation between Bi−1 and Bi, and the one between Bi

and Rj with the Neural CRF (N-CRF) unit N respectively.
Then the relations are integrated by concatenation and pro-
jection as the block’s output. Formally, the process is:

Zi,j = N (Bi, Rj),

Z ′
i−1,i = N (Bi−1,UP(Bi)),

Rj+1 = Proj(Z ′
i−1,i ⊕ PS(Zi,j)).

(8)

Here Rj+1 ∈ RHi−1×Wi−1×CR
j+1 is the output of one Hi-

CRF block. UP represents bilinear upsampling, PS repre-
sents pixel shuffle, Proj represents projection, and ⊕ de-
notes concatenation by channel. Pixel shuffle is applied to
ZR
i,j , due to its deep semantic context from Rj with a large

channel count, enhancing sharpness and reducing compu-
tational load. Bilinear upsampling is applied to Bi, be-
cause it has a mix of semantic and spatial information with
a moderate channel count, preserving structural coherence
and aligning it spatially with Bi−1 for later interaction.

Three consecutive HiCRF blocks, H1, H2, H3, cascade
to form the complete CRF Decoder, represented as:

R1 = H1(B3, B2, R0),

R2 = H2(B2, B1, R1),

R3 = H3(B1, B0, R2).

(9)

The HiCRF blocks benefit the blood flow estimation
problem from multiple aspects. (1) It leverages the depen-
dencies between neighbor regions, smooths out flow pre-
dictions, and generates more consistent flow results. (2)
The integration of multilevel features enables the model
to capture both low-level fine-grained structure details, and
high-level context with rich semantics. (3) By passing fea-
tures through cascaded HiCRF blocks, the model iteratively
adjusts the features and refines predictions, improving the
ability on handling regions with complex flow dynamics.

Neural CRF unit. With the development of deep learning,
multiple works implement CRF with neural networks and
train the whole network end-to-end [22, 42, 49]. Here we
adopt the Neural CRF (N-CRF) implementation [46], due
to its ability to model dense pairwise relations comprehen-
sively. It implements fully-connected CRF with window at-
tention [23]. Specifically, the CRF energy function is com-
posed of the unary potential term, which describes the node
itself, and the pairwise potential term, which models the
dependencies between nodes. The Neural CRF unit imple-



ments the unary potential term with convolution layers, and
the pairwise potential term with window attention. The en-
ergy function is optimized with the whole model end-to-end
by back propagation. Please refer to [46] for details.

3.5. Loss Function
Since the blood flow speed varies a lot for different ves-
sels, simply calculating the absolute error makes the train-
ing process dominated by vessels with large blood flow, and
ignores those small ones. Besides, the drastic change and
extreme values in the pseudo blood flow label caused by
the measurement artifacts need to be handled to alleviate its
influence on model training.

To address issues above, we adopt a scale-invariant loga-
rithmic loss [7] for model training. Formally, the loss func-
tion is defined as:

L = α

√
1

N

∑
i

g2i −
λ

N2
(
∑
i

gi)2, (10)

where gi = log yi − log ȳi is the logarithmic difference be-
tween the prediction yi and the pseudo label ȳi. N is the
number of pixels in an image. α, λ are constant factors.
The logarithmic scaling compresses the blood flow values
to similar ranges, and reduces the impact of absolute mag-
nitude differences. It also alleviates the influence of extreme
values in the pseudo label due to measurement artifacts and
allows for more reliable learning.

3.6. Dataset
To validate this approach, we build datasets with paired
OCTA images and ODT blood flow measurements of the
mouse cerebral cortex. We use ODT for high-resolution,
high-sensitivity blood flow data [34, 43]. The data collec-
tion involves three steps: animal preparation, data acquisi-
tion, and data processing. Mice require at least 2 months to
mature, followed by cranial window surgery and recovery.
An ultrahigh-resolution fiber optic OCT system [44] then
captures OCTA or ODT data from the same brain region.
Raw data is processed with specialized algorithms to gener-
ate data volumes, which are projected to 2D images. Note
that the OCTA data is 8-bit, while the ODT data is 16-bit,
which increases the blood flow speed estimation difficulty.

Because the animal’s state (anesthetized or awake) af-
fects imaging characteristics [9], we collected data in both
states, creating two separate datasets, Anesthetized Dataset
and Awake Dataset. Given the time-consuming and labor-
intensive process of OCTA/ODT animal data collection,
prior animal studies typically use fewer than 10 samples
[13, 14, 21]. We have collected 106 samples—53 pairs
of OCTA and ODT data from over 30 animals, cover-
ing various conditions. This includes 66 anesthetized and
40 awake samples. Samples of Anesthetized Dataset and

Awake Dataset are shown in Fig. 5. OCTA images and
ODT data of Awake Dataset are affected by bulk motion
artifacts caused by awake animal [9], appearing as striped
lines, while data of Anesthetized Dataset is less affected by
such artifacts.

4. Experiments
4.1. Experimental Setup
Implementation details. We adopt Swin Transformer
[23] as the model backbone, following previous regression
works [32, 46, 47]. w1, w2 and w3 are set as 3, 5 and 7
in the AWF module. α and λ are set as 10 and 0.85 in
the loss function respectively. We train the model with 50
epochs. The initial learning rate is 0.0002, which gradually
decreases to 0.00002. We use Adam optimizer [15] with
β1 as 0.9, and β2 as 0.999. We have compared our method
with recent advanced regression models of various archi-
tectures [6, 17, 27, 32, 46, 47]. We use the official imple-
mentations of these methods. All methods are trained and
evaluated on both Anesthetized Dataset and Awake Dataset
for comparison. We perform five-fold cross validation for
comprehensive evaluation on both datasets.

Evaluation metrics. We adopt relative absolute error (Abs
Rel), and root mean squared error (RMSE) as the metrics
to evaluate methods on this task. These metrics are widely
used in the regression task [24]. The metrics are computed
based on the model’s prediction data with linear scaling,
following previous regression works [17, 32]. Abs Rel can
handle data with different ranges, and RMSE is more sensi-
tive to large absolute errors. Please refer to the supplemen-
tary file for metric details and additional experiments.

4.2. Dataset Evaluation
Anesthetized Dataset. Evaluation results on the Anes-
thetized Dataset are shown in Table 1 (left part). Our
method clearly outperforms the comparison methods. For
the Abs Rel metric, it surpasses the second-best model by
0.009, and for the RMSE metric, it outperforms the second-
best model by 0.150. These represent significant improve-
ments for these metrics. The low errors, especially Abs Rel
of 0.353, show that our model can effectively estimate the
blood flow based on the vascular structure, which validates
the feasibility of the proposed approach.

Qualitative results of our method are shown in Fig. 5 (top
row). ODT measurement is severely affected by the angle
artifacts, leading to inconsistent and incorrect results, which
appear like alternating bright and black stripes, shown in
the green rectangular region. The artifacts can even break
vessels, as shown in the blue rectangular region. In contrast,
our method can generate consistent and smooth blood flow
estimation, with a high alignment with the OCTA vascular
structure, thanks to our framework and module design. Our



Table 1. Five-fold cross validation results on Anesthetized Dataset and Awake Dataset. Mean and standard deviation are reported. ↓
indicates that better performance corresponds to smaller values. Results in bold are the best. Results underlined are the second-best.

Method Architecture Anesthetized Dataset Awake Dataset

Abs Rel ↓ RMSE ↓ Abs Rel ↓ RMSE ↓
BTS [17] DenseNet 0.374±0.033 6.777±0.532 0.366±0.026 6.336±0.776
IEBins [32] Swin 0.377±0.057 7.217±0.730 0.364±0.056 7.958±1.197
NeuWin [46] Swin 0.366±0.046 6.428±0.337 0.367±0.038 6.324±0.759
Ord Ent [47] Swin 0.362±0.045 6.442±0.447 0.359±0.036 6.315±0.853
Diff Depth [6] Diffusion 0.485±0.037 7.649±0.341 0.457±0.070 7.241±0.736
ECoDepth [27] Diffusion 0.445±0.065 7.958±1.286 0.766±0.080 7.513±0.565

OCTA-Flow (ours) Swin 0.353±0.042 6.278±0.480 0.318±0.018 6.037±0.674

(a) OCTA image (b) ODT data (c) ODT data w. colormap (d) Our estimation w. colormap

Figure 5. Qualitative results of our method on Anesthetized Dataset (top row) and Awake Dataset (bottom row). Zoomed-in regions with
arrows highlight details. Top rows show that our method can generate more continuous and smoother blood flow estimations than ODT
data by mitigating the measurement artifacts. Bottom rows show that both OCTA images and ODT data are affected by motion artifacts
caused by awake animal’s movements, while our method is robust in handling motion artifacts present in both the OCTA and ODT data.

estimation also shows consistency with hemodynamics [2,
29], where the blood flow speed gradually decreases when
the blood flow goes from large vessels to small branches.

Awake Dataset. Evaluation results on the Awake Dataset
are shown in Table 1 (right part). Our method outper-
forms comparison methods as well. The increased advan-
tage (0.041 on Abs Rel and 0.278 on RMSE) of our method
over the second-best method highlights its robustness to the
motion artifacts on this dataset.

Qualitative results of our method are shown in Fig. 5
(bottom row). The OCTA image is heavily influenced by
the motion artifacts in the awake group, leading to white

striped lines across the whole image, as pointed by the ar-
rows in the zoomed-in rectangular regions of column (a).
ODT measurement is also affected by the artifacts, appear-
ing as black striped lines, highlighted by the arrows in the
zoomed-in rectangular regions of column (b) and (c). Con-
versely, our method is robust to motion artifacts, provid-
ing a clean blood flow estimation. We attribute this to both
the AWF module, which captures intricate vascular struc-
tures and discriminates vessels from the artifact noise, and
the CRF Decoder, which mitigates the impact of outliers by
modeling the interdependencies of multilevel features and
enforces consistent and smooth blood flow estimations.



Table 2. Ablation study of the main components on Anesthetized
Dataset. Base denotes the UNet-like baseline model. AWF is the
Adaptive Window Fusion module. CRFD is the CRF Decoder. ∆
denotes the performance difference compared with the base model.
Results in bold are the best.

Model Abs Rel ↓ ∆abs RMSE ↓∆rmse

Base 0.393 - 7.232 -
Base + AWF 0.344 0.049 6.998 0.234
Base + CRFD 0.358 0.035 7.011 0.221
Base + AWF + CRFD (ours) 0.328 0.065 6.661 0.571

Table 3. Ablation study of the Adaptive Window Fusion module
on Anesthetized Dataset. W/O AWF means the model without
the AWF module. PPM means replacing the AWF module with
the pyramid pooling module. W1, W2, W3 are window attention
blocks with different window sizes. G means using the dynamic
weights generated by the gate. ∆ denotes the performance differ-
ence compared with the model without the AWF module. Results
in bold are the best.

Model Abs Rel ↓ ∆abs RMSE ↓∆rmse

W/O AWF 0.358 - 7.011 -
PPM 0.342 0.016 6.964 0.047

W1 0.348 0.010 6.922 0.089
W1 + W2 0.343 0.015 6.838 0.173
W1 + W2 + W3 0.335 0.023 6.790 0.221
W1 + W2 + W3 + G (ours) 0.328 0.030 6.661 0.350

Table 4. Ablation study of the CRF Decoder on Anesthetized
Dataset. W/O CRFD means the model without the CRF Decoder.
H1, H2, H3 refer to the first, second and third HiCRF block.
∆ denotes the performance difference compared with the model
without CRF Decoder. Results in bold are the best.

Model Abs Rel ↓ ∆abs RMSE ↓ ∆rmse

W/O CRFD 0.344 - 6.998 -
H1 0.339 0.005 6.945 0.053
H1 + H2 0.334 0.010 6.884 0.114
H1 + H2 + H3 (ours) 0.328 0.016 6.661 0.337

4.3. Ablation Study
Main components. Table 2 shows the ablation study results
of the main components on Anesthetized Dataset using the
default split fold. Base refers to a UNet-like baseline model
with skip connections, using the same backbone network
as ours. Using AWF or CRF Decoder alone leads to sig-
nificant performance improvement, and their combination
further improves the results. This demonstrates that AWF
and CRF Decoder are not only individually effective, but

also have complementary effects for the task.

AWF module. Table 3 presents the ablation study results of
the AWF module on Anesthetized Dataset. Using one win-
dow attention block improves Abs Rel by 0.010 and RMSE
by 0.089, and using multiple window attention blocks with
different window sizes further boosts the performance by
0.013 on Abs Rel and 0.132 on RMSE. This validates the
effectiveness of our window attention based multiscale con-
text information fusing. Applying dynamic weights condi-
tioned on the input brings totally 0.03 improvement on Abs
Rel and 0.35 improvement on RMSE. This shows the bene-
fit of using input-based adaptive fusion.

Compared to the pyramid pooling module, our method
performs significantly better than it with the improvement
of 0.014 on Abs Rel and 0.303 on RMSE. This demon-
strates the advantage of our window attention-based method
on capturing complicated vascular structure than the widely
used pyramid pooling method.

CRF Decoder. Table 4 summarizes the ablation study
of the CRF Decoder on the Anesthetized Dataset. Us-
ing a single HiCRF block improves Abs Rel by 0.005 and
RMSE by 0.053. When more HiCRF blocks are applied
in cascade and more features from multiple levels are in-
cluded, the performance continues increasing, and achieves
an improvement of 0.016 on Abs Rel and 0.337 on RMSE.
This study demonstrates the effectiveness of modeling inter-
dependencies across multilevel features in the CRF form,
and the necessity of progressive refinement through cas-
caded HiCRF blocks.

5. Conclusion

We propose a novel approach for estimating blood flow
speed directly from OCTA images, circumventing the need
of costly blood flow measurements. ODT data is used as
pseudo label to address the lack of ideal ground truth mea-
surement data. We design an Adaptive Window Fusion
module to capture the correlation between complex vascu-
lar structures and the flow speed, and the CRF Decoder to
model interdependencies across multilevel features, enforc-
ing smooth and consistent predictions. In addition, we col-
lected two real datasets for evaluation, and experiments on
the datasets demonstrate that our method produces accurate
flow speed estimation without the artifacts in ODT measure-
ments. We believe this work can inspire future research in
this emerging field of significant practical value, with great
potential to make blood flow speed measurement more ac-
cessible and accurate.
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