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1. Dataset Properties

The OCTA and ODT images in the dataset have a width of
1,000 pixels, while the height varies between 500 and 625
pixels, depending on the hardware system settings. Each
OCTA image is pixel-wise aligned with its corresponding
ODT data to form a paired dataset, ensuring that both im-
ages have the same spatial dimensions. OCTA images are
8-bit grayscale, with theoretical integer values ranging from
0 to 255. In contrast, ODT data is 16-bit, with theoretical
integer values ranging from 0 to 65,535. This substantial
range in blood flow data values adds to the complexity of
the task. The properties of Anesthetized Dataset and Awake
Dataset are shown in Table 1.

Table 1. Properties of Anesthetized Dataset and Awake Dataset.

Property Anesthetized Awake

Sample count 66 40
Motion artifacts no/slight obvious
Blood flow speed medium high

2. Evaluation Metric Details

In our experiments, the relative absolute error (Abs Rel)
and root mean squared error (RMSE) are used as evaluation
metrics. Below, we provide their formal definitions.

The Abs Rel is defined as:

Abs Rel =
1

N

N∑
i=1

|yi − ȳi|
ȳi

, (1)

where N is the number of pixels in an image. yi is the
model’s blood flow speed estimation for the i-th pixel, and
ȳi is the corresponding flow speed measurement from ODT.

Abs Rel emphasizes the relative magnitude of errors, en-
suring that both small and large values contribute equitably
to the overall evaluation. This property makes it particu-
larly suitable for assessing blood flow speed data that spans
varying scales.

(a) OCTA image (b) Adaptive weight visualization

Figure 1. Adaptive weight visualization results. (a) shows the
OCTA input image, and (b) overlays it with the adaptive weight,
where brighter regions represent higher weights. Key regions like
main vessels, branches, and junctions critical for blood flow esti-
mation are effectively highlighted. This demonstrates the Adap-
tive Window Fusion module’s ability to capture vessels of varying
sizes and complexities, adaptively focusing on important features
for blood flow speed estimation.

RMSE is defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ȳi)2. (2)

RMSE emphasizes large errors due to its quadratic nature,
making it sensitive to outliers or significant deviations be-
tween predictions and labels. This sensitivity is crucial for
blood flow speed estimation, where avoiding substantial er-
rors is important.

By combining Abs Rel and RMSE, we achieve a bal-
anced evaluation framework: Abs Rel ensures robustness
across varying scales, while RMSE highlights the impact
of large errors. Together, they provide a comprehensive as-
sessment of the model’s performance.

3. Adaptive Weight Visualization
Fig. 1 intuitively demonstrates the effectiveness of the pro-
posed Adaptive Window Fusion module. For the dynamic
weight G ∈ RH3×W3×3, we first compute its absolute val-



(a) OCTA image (b) ODT data (c) ODT data w. colormap (d) Our estimation w. colormap

Figure 2. Additional qualitative results on the Anesthetized Dataset. Zoomed-in regions with arrows highlight details. ODT data is severely
influenced by measurement artifacts, causing inconsistent results (marked by green arrows), which may even totally break the blood flow
(marked by blue arrows). In contrast, our method mitigates the measurement artifacts, producing smoother and more continuous blood
flow estimations.

ues. Then, for each spatial location, we extract the max-
imum value across its three channels, producing a spatial
map. This map is subsequently upsampled to the original
image size using bilinear interpolation, and overlaid onto
the OCTA image.

The visualization results demonstrate that critical re-
gions for blood flow speed estimation, such as main vessels,
branches, and junctions, are emphasized by the adaptive
weights. This validates the capability of the Adaptive Win-
dow Fusion (AWF) module to effectively capture vessels of
varying sizes and complex structures, which significantly
impact blood flow speed estimation. Moreover, the mod-
ule adaptively adjusts its focus based on the input vascular
image, ensuring alignment with diverse vascular patterns.
This adaptiveness enhances the model’s ability to prioritize
essential features, improving its performance in blood flow
speed estimation.

4. Window Attention Blocks of AWF

We perform the ablation study on the number of window
attention blocks in AWF. Tab. 2 shows that three blocks are
sufficient to capture the relations, and additional blocks with
increasing window sizes do not bring extra benefit. Here
6 window attention blocks in Tab. 2 means using 6 blocks
with window sizes of 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11,

Table 2. Effect of the number of window attention blocks in AWF.
Results in bold are the best.

Metric 3 (ours) 4 5 6

Abs Rel ↓ 0.328 0.330 0.331 0.330
RMSE ↓ 6.661 6.712 6.706 6.684

and 13 × 13, respectively. Hence we use window attention
with three blocks in AWF.

5. Evaluation on Simulation Data
We create a simulation ODT dataset based on real data
properties, largely removing the ODT artifacts (inconsis-
tent/alternating flow), shown in Fig. 3. We then evaluate
all methods on this simulation dataset. The results in Tab. 3
further validate the superiority of our method.

Figure 3. Raw ODT (left) and simulated ODT (right) images.



Table 3. Evaluation results on the simulation dataset. Results in
bold are the best.

Method Abs Rel ↓ RMSE ↓
BTS [2] 0.292 5.699
IEBins [4] 0.316 8.521
NeuWin [5] 0.283 5.102
Ord Ent [6] 0.276 5.310
Diff Depth [1] 0.378 6.100
ECoDepth [3] 0.403 7.289
OCTA-Flow (ours) 0.267 4.988

6. Additional Qualitative Results

Fig. 2 presents additional qualitative results from the Anes-
thetized Dataset. The ODT data shown in columns (b)
and (c) exhibit significant measurement artifacts, primar-
ily caused by the angle between the incident light and the
vasculature. These artifacts appear as alternating bright and
dim regions, resulting in inconsistent and erroneous mea-
surements, as highlighted by the green rectangular region.
Moreover, these artifacts can even break the blood flow in
the vessels, as evident in the blue rectangular regions when
comparing columns (a) with (b) and (c).

In contrast, our method (column (d)) generates consis-
tent and smooth blood flow estimation results while pre-
serving the continuity and integrity of the blood flow. This
demonstrates the robustness of our approach in mitigat-
ing system-level artifacts in blood flow speed measure-
ments, underscoring its superiority over laboratory-based
ODT measurements in this aspect.
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