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Abstract In this paper we study effective approaches to
create thumbnails from input images. Since a thumbnail
will eventually be presented to and perceived by a human
visual system, a thumbnailing algorithm should consider
several important issues in the process including thumb-
nail scale, object completeness and local structure smooth-
ness. To address these issues, we propose a new thumb-
nailing framework named Scale and Object Aware Thumb-
nailing (SOAT), which contains two components focus-
ing respectively on saliency measure and thumbnail warp-
ing/cropping. The first component, named Scale and Object
Aware Saliency (SOAS), models the human perception of
thumbnails using visual acuity theory, which takes thumb-
nail scale into consideration. In addition, the “objectness”
measurement (Alexe et al) is integrated in SOAS, as to
preserve object completeness. The second component uses
SOAS to guide the thumbnailing based on either retarget-
ing or cropping. The retargeting version uses the Thin-Plate-
Spline (TPS) warping for preserving structure smoothness.
An extended seam carving algorithm is developed to sample
control points used for TPS model estimation. The cropping
version searches a cropping window that balances the spatial
efficiency and SOAS-based content preservation.

The proposed algorithms were evaluated in three ex-
periments: a quantitative user study to evaluate thumb-
nail browsing efficiency, a quantitative user study for sub-
ject preference, and a qualitative study on the RetargetMe
dataset. In all studies, SOAT demonstrated promising per-
formances in comparison with state-of-the-art algorithms.
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1 Introduction

With the increasing popularity of image capturing and dis-
playing devices, effective ways for presenting and brows-
ing image datasets are drawing a significant amount of new
research attention. In image browsing, tiny thumbnails pro-
vide the basic function for a user to quickly explore an im-
age dataset visually, such as personal photo albums or scien-
tific image collections. In this paper we use the term image
thumbnailing to indicate the process of creating a thumb-
nail from an input image. A straightforward thumbnailing
approach is to simply shrink the original image. Such a solu-
tion, despite being widely used in image browsing and man-
agement systems, has been shown to be less effective than
smarter solutions such as thumbnail cropping (Chen et al
2003; Lam and Baudisch 2005; Suh et al 2003) and retar-
geting (Liu and Gleicher 2005; Avidan and Shamir 2007).
This is particularly true for tiny thumbnails displayed on de-
vices with small sized screens just as a smart phone.

Thumbnailing can be viewed as a special case of image
resizing, where the basic philosophy is to preserve important
content as much as possible while changing the image size.
Many image resizing methods generate aesthetically im-
pressive results when the target image size is comparable to
size of the original image (Rubinstein et al 2010b). By con-
trast, insufficient attention has been paid to image thumb-
nailing scenarios where the target image is much smaller
than the input one. Several important issues need to be ad-
dressed by an effective thumbnailing algorithm:

— Thumbnail scales. In a browsing task, thumbnails usu-
ally have much smaller scales/sizes than the origi-
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Fig. 1 Flowchart of the proposed method. SOAT contains two main components: (1) Scale and Object Aware Saliency (SOAS) and (2) thumbnail-
ing transformation. Given an input image, SOAS is calculated as a measurement of pixel-level importance. It guides the thumbnailing transforma-
tion method (either SOAT ¢, or SOAT ;) to create a thumbnail output image. See text for details.

nal images. Studies have shown that image scales can
significantly affect the human visual perception pro-
cess (Judd et al 2011; Mannos and Sakrison 1974;
Van Nes and Bouman 1967). Such scale information is
under-explored in existing retargeting algorithms.

— Object completeness. Preserving completeness of ob-
jects is crucial yet challenging in thumbnailing. A ma-
jor difficulty lies in the explicit measurement of object
completeness. Consequently, many retargeting methods
address this issue implicitly by preserving low-level im-
age information such as gradients. The object-level com-
pleteness, by contrast, is seldom considered.

— Structure smoothness. The contamination of structure
smoothness caused by pixel-removal type of retarget-
ing methods usually creates only minor visual artifacts
when the retargeted images are relatively large. This
is unfortunately not true for thumbnails: removing a
large amount of pixels often creates serious image struc-
ture discontinuities which human visual systems are not
comfortable with.

To address these issues, we propose a new image thumb-
nailing framework, Scale and Object Aware Thumbnailing
(SOAT) as shown in Figure 1. SOAT contains two main
components: (1) Scale and Object Aware Saliency (SOAS)
and (2) thumbnailing transformation. As a measurement
of pixel-level importance, SOAS guides the thumbnailing
transformation to create a thumbnail from the input image.

SOAS. We propose a novel scale-dependent saliency
to encode information of thumbnail scales. Inspired by the
study in visual acuity (Mannos and Sakrison 1974; Van Nes
and Bouman 1967), we calculate such saliency on the im-
age perceived by the human vision system when the original
image is observed. Specifically, the perceived image is esti-
mated by using a scale-dependent contrast sensitivity func-
tion to filter out high frequency structures that are difficult
to perceive at the smaller thumbnail scales. The resultant
scale-dependent saliency is further enhanced by preserving

object-level object completeness, which is measured by the
recently proposed objectness (Alexe et al 2012). In particu-
lar, the saliency values are tuned down in regions of weak
objectness, e.g., backgrounds.

Thumbnailing transformation. We propose two SOAT
algorithms based on image retargeting and thumbnail crop-
ping respectively. The retargeting method we proposed,
named SOAT,, uses the Thin-Plate-Spline (TPS) (Book-
stein 1989) model to balance warping smoothness and
matching accuracy. The control points for TPS model es-
timation are carefully traced and sampled from an extended
Seam Carving (Avidan and Shamir 2007) algorithm guided
by SOAS. Alternatively, the cropping method we proposed,
named SOAT.,,, extends the previously proposed thumbnail
cropping algorithm (Suh et al 2003) by using SOAS as the
saliency measure.

We evaluated the proposed SOAT algorithms both quan-
titatively and qualitatively. The quantitative study is of
higher priority as a human’s perception of image thumb-
nails can be very subjective. For this purpose, we have de-
signed user studies with two tasks: 1) lmage browsing task.
Each user was asked to search a target thumbnail from a
screen fully tiled by thumbnails. The time cost and accuracy
of the searching procedure were recorded and analyzed sta-
tistically using ANOVA and Tukey’s significance test. The
results show that our methods compare favorably in both ef-
ficiency and accuracy with previously proposed methods. 2)
Subjective preference task. Each user was asked to pick a
preferred thumbnail from a pair of thumbnails generated by
different methods. The preference ratio for method compar-
ison pairs were recorded and analyzed statistically using t-
test. The results show that SOAT., is preferred against other
methods.

For the qualitative study, we applied SOAT to the Retar-
getMe dataset (Rubinstein et al 2010a) on which the results
from many state-of-the-art algorithms have been previously
collected and made public. The study shows that, our meth-
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ods, despite emphasizing on thumbnail browsing effective-
ness rather than aesthetic effects, generate images that are
visually as good as previously reported results.

In the rest of the paper, we first summarize related work
in Sec. 2. Then, we introduce the proposed SOAT framework
in Sec. 3, followed by the scale and object aware saliency in
Sec. 4 and the two SOAT algorithms in Sections 5 and 6,
respectively. The experiments are described and discussed
in Sec. 7. Finally, conclusion is drawn in Sec. 8.

2 Related work
2.1 Image retargeting and thumbnail cropping

Automatic image thumbnailing can be viewed as a special
case of content aware image resizing: reducing the size of
an input image to generate a much smaller thumbnail. Pre-
vious studies can be roughly divided into two classes: image
retargeting and thumbnail cropping.

Image retargeting (Liu and Gleicher 2005) has been ac-
tively studied fairly recently. A comparative evaluation of
existing retargeting algorithms can be found in (Rubinstein
et al 2010b). They can be further sorted into two categories:
discrete methods that remove unimportant pixels and con-
tinuous methods that reorganize image content with a con-
tinuous warping function.

A typical example of discrete image retargeting methods
is the popular Seam Carving (SC) proposed by Avidan and
Shamir (2007). The idea is to selectively and iteratively re-
move continuous pixel segments, termed seams, while pre-
serving the image structure as much as possible. Several no-
table works have extended and improved the original SC
algorithm. Grundmann et al (2010) introduced discontin-
uous seams in spatial-temporal space for video retargeting
task. Mansfield et al (2010) defined scene consistency and
used user-provided image depth map to guide seam carv-
ing. Rubinstein et al (2008) presented an improved version
of SC with a new type of energy criterion to remove seams
that introduce the least amount of energy into the retargeted
result. There are other discrete retargeting methods such
as (Simakov et al 2008), which uses a bi-directional simi-
larity to guide the retargeting process.

Continuous methods warp the original image to the tar-
get image through a continuous transformation, driven by
image content. Liu and Gleicher (2005) used non-linear
fisheye-view warping that emphasizes parts of an image.
Guo et al (2009) constructed a mesh-based image represen-
tation and obtained the retargeting result by finding a ho-
momorphous target mesh with the desired size. Karni et al
(2009) presented an energy minimization-based shape de-
formation for image resizing. An adaptive image and video
retargeting algorithm was proposed by Kim et al (2009).
It solves a constrained optimization problem on strip-based

scaling and distortions formulated in the frequency domain.
Similarly, Wolf et al (2007) conducted transformations to
shrink unimportant regions more than important ones with
multiple criteria including local saliency, motion detection
and object detection. Wu et al (2010) analyzed image se-
mantics such that the main content of an image could be
summarized. Ding et al (2011) pursued the trade-off be-
tween keeping important parts and reducing visual distor-
tions by using importance filtering. Niu et al (2012) pro-
posed using non-homogeneous warping by restricting dis-
tortion in weakly noticeable regions.

Thumbnail cropping algorithms have been shown to be
effective for thumbnail browsing and recognition (Suh et al
2003). These algorithms usually first estimate the spatial dis-
tribution of saliency or importance and then find a cropping
window that best balances the content preservation and win-
dow size efficiency. The main challenges are: (1) how to de-
fine the saliency, and (2) how to find the “best” cropping
window. In (Suh et al 2003), the classic saliency map (Itti
et al 1998) is combined with a greedy window searching al-
gorithm for automatic thumbnail cropping. The similar idea
was also explored in (Chen et al 2003). Lam and Baud-
isch (2005) developed a technique to display web pages on
small screen devices with the combination of thumbnails
and readable text. Luo et al (2010) proposed a searching
strategy to find the maximum saliency density. In (March-
esotti et al 2009), a visual saliency detection mechanism
based on an annotated image database was applied to thumb-
nailing. Learning-based thumbnail cropping has been ex-
plored in (Li and Ling 2009; Kennedy et al 2011). Crop-
ping and warping based approaches have also been used for
video summarization such as in (Wang et al 2010; El-Alfy
et al 2007).

Thumbnail cropping can be viewed as a special case of
the discrete retargeting method: it removes all pixels out-
side the cropping window while keeping the internal ones
untouched. It is worth mentioning that in the evaluation of
retargeting algorithms by Rubinstein et al (2010b), man-
ual cropping outperforms all other retargeting algorithms in
terms of user preferences. Aside from the above methods,
Rubinstein et al (2009) presented a multi-operator approach
that smartly combines several retargeting and cropping op-
erations for image resizing.

Our method is different from these previous studies
mainly in several aspects. First, we encode scale information
explicitly with a perception model simulating the thumb-
nail observation process. Second, we model object com-
pleteness by the objectness measurement (Alexe et al 2012).
Third, we use the TPS model as the warping function in the
retargeting-based thumbnailing. The proposed SOAT, al-
gorithm can also be viewed as a combination of continuous
and discrete retargeting schemes where extended seam carv-
ing is used to guide TPS model estimation. Fourth, we in-
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troduce the scale and object aware saliency (SOAS) to both
retargeting and cropping for thumbnailing. As shown in the
experiments (Section 7), all components contribute to the
effectiveness of the proposed SOAT framework.

A preliminary version of SOAT;, appeared in
ICCV’11 (Sun and Ling 2011). In this paper, we im-
prove SOAT, in not only the saliency computation
(frequency domain filtering) but also the warping function
(better control points sampling for TPS). Furthermore, we
present a new thumbnail cropping approach, SOAT..,, which
in fact performs the best in the user study. Last but not least,
the evaluation in this paper is more thorough by involving
more evaluation criteria, methods, user studies and subjects.

2.2 Saliency calculation

The scale dependent saliency in our method is motivated
by the studies of human visual acuity (Mannos and Sakri-
son 1974; Van Nes and Bouman 1967; Peli 2001), which
describes how well human can distinguish visual stimuli at
various spatial frequencies. Given the image size and an ob-
servation distance, the theory can be used to determine the
minimum scale at which an image structure is perceivable.
In particular, we apply the contrast sensitive function to the
input image as a frequency filter to inhibit high frequency
components, which reflects tiny structures that are barely
visible at the smaller scales. In addition, a recent study (Judd
et al 2011) has shown that image scales do affect visual fix-
ations, which support our advocation of explicitly modeling
scale information for thumbnailing.

Our study is also related to the multi-scale saliency com-
putation proposed by Liu and Gleicher (2006), which con-
structs a scale-invariant saliency map from an image, seg-
ments the image into regions, and enhances the saliency
map with region information. Our proposed saliency, SOAS,
is different in several aspects: 1) SOAS calculates saliency
map in a single scale rather than a scale pyramid. This
scale is determined by the viewing distance, the thumbnail
size and the display resolution. This renders the proposed
method scale-aware. 2) SOAS uses objectness as object lo-
calization measurement rather than the image segmentation
used in (Liu and Gleicher 2006). 3) SOAS obtains low-
level saliency information from multiple channels (colors,
intensity and orientations) with the same nature of (Itti et al
1998). By contrast, in (Liu and Gleicher 2006) the pixel
level saliency is calculated on neighborhood color differ-
ence. In addition to (Liu and Gleicher 2006), our saliency
also shares some philosophy with the work on perceptual
scale space (Wang and Zhu 2008).

Another important component used in our saliency com-
putation is the objectness measurement proposed in (Alexe
et al 2012), which estimates the likelihood that a given

bounding window contains an object. A short description of
objectness is given in Sec. 4.2.

3 Overview
3.1 Problem Formulation

Let I be an input image of size mg X ng and S(I) be its
saliency map', such that S(I) is an mgo X ng matrix. We
formulate the thumbnailing process as a thumbnailing trans-
form 7T

J=T(I,S()), (1)

where J is the result of size m; X ni such that m; < myg
and n; < ng. In this formulation, a thumbnailing method is
characterized by two components: the saliency computation
S(.) and the thumbnail transformation 77(.).

Note that the function 7(.) can be either continuous
or discrete. For example, the seam carving (SC) algo-
rithm (Avidan and Shamir 2007), when carving a vertical
seam { (7, seam(7)),1 < i < myg}, can be defined as

JGi,g) = TS = {I(I(i,j), if 7 < seam(i) )

1,7+ 1), if j > seam(i) ’

where i € [1,mg] and j € [1, ng] are row and column in-
dices respectively; seam(i) indicates the seam position at
row ¢ calculated by the seam searching strategy to minimize
the carving energy defined over saliency S(I). Horizontal
seam removal can be defined similarly. SC employs a dis-
crete assignment because the pixels along the path of seams,
i.e. {I(i, seam(i))};"%, are eliminated and the information
they carried is discarded.

Our goal is to design an image thumbnailing algorithm
in the context of tiny thumbnail browsing task. A naive so-
lution is to directly resize the original image towards the
thumbnail size. This is however too aggressive since thumb-
nails are usually much smaller than the original images. In-
stead, we first use the proposed thumbnailing methods to re-
duce I to an intermediate image J of a smaller yet compara-
ble size, and then shrink J to create the final thumbnail. For
retargeting-based thumbnailing, i.e. SOATY,,, we fix the size
of J as 20% of that of I; while for cropping-based thumb-
nailing, i.e. SOAT.,, we use the cropping results as J. For
conciseness, in the rest of the paper we treat image .J as the
final result by ignoring the trivial shrinking step.

! We use saliency to indicate the importance measurement used in
general, which is not limited to the visual attention-based saliency.
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3.2 Framework Overview

To achieve the above goal, we propose a new image thumb-
nailing framework, named Scale and Object Aware Thumb-
nailing (SOAT) and denoted as 7 °°, with a novel saliency,
named Scale and Object Aware Saliency (SOAS) and de-
noted as S°°, which captures the scale and objectness infor-
mation.

Given an input image [ and the target size of the
output thumbnail, SOAT generates a thumbnail J =
T#°(1,5°°(I)) in two steps: saliency calculation and
thumbnailing transformation. The flowchart of SOAT is
summarized in Figure 1.

In the saliency calculation step, we address issues of
thumbnail scale and object completeness. Inspired by the
study of visual acuity in human vision, we propose the scale
dependent saliency, denoted as SSC‘”E(I ), to reflect the rel-
ative scale variation between the original image and the im-
age thumbnail. S*°*¢(]) is further augmented by combin-
ing with object completeness. The resulting scale and object
aware saliency S°°(I) then guides thumbnailing transfor-
mation, i.e., the second step.

In the thumbnailing transformation step, we investigate
two different approaches based on retargeting and cropping
respectively. The retargeting approach, named SOAT,,, uses
the thin-plate-spline (TPS) model as the warping function
and uses S°° to estimate the TPS parameters. The cropping
approach, named SOAT,,, uses S*° to guide cropping win-
dow searches with a greedy algorithm.

In the following sections, we detail each component of
SOAT separately.

4 Scale and Object Aware Saliency
4.1 Scale-dependent Saliency

When a thumbnail is presented on a digital display device to
an observer, three different images are involved in the visual
perception process: the original image of size s, in pixels,
the displayed images of size s4 in inches, and the perceived
images on the retina of size s,. The relationship between
these sizes are bonded by two distances: the distance D be-
tween the eye of the observer and the display device and the
distance D,,, between the human retina and pupil. Figure 2
illustrates the relations between the these variables, which is
summarized below:
sa=le, 5= 0, G
where § is the screen resolution in DPI (Dots Per Inch).
Since a thumbnail is eventually presented to and per-
ceived by the human visual system, it is critical to explore
how well the system preserves the image information. In

Original Size Display Size Projection Size
So Sa Sp

—

Image in Storage Image on Retina

Image on Display

Fig. 2 Demonstration of image sizes in different stages.
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Fig. 3 Left: a 1D CSF curve. Right: a 2D CSF filter.

particular, we want to know which regions of the image be-
come indistinguishable at the target thumbnail scale. This
has been studied in psychology and vision sciences in terms
of Contrast Sensitivity Function (CSF) (Mannos and Sakri-
son 1974; Van Nes and Bouman 1967; Peli 2001). Accord-
ing to the study, not all patterns in an image are recognizable
by humans. The perceived image, denoted as I,,, is deter-
mined by both the frequency of the stimuli and its contrast.
We apply the following CSF defined in (Mannos and
Sakrison 1974) as a filter in the frequency domain.

CSF(v) = 2.6-(0.019240.114-v)-exp(—(0.114-v) 1), (4)

where v is the stimulus frequency in CPD (Cycles Per De-
gree). An illustration of CSFs is given in Figure 3.

Since the center of the frequency domain is the DC com-
ponent with frequency zero, we maintain whatever value it
is in the filtering process. Furthermore, since the domain of
CSF is defined in CPD with a visual angle of one degree,
we need to adjust the filter according to the particular vi-
sual angle where the image is perceived. Specifically, when
an observer looks at an image with of s, pixels, sitting D
inches away in front of the monitor of resolution d, the cor-
responding CSF is calculated as:

CSF*(v) = CSF (2 —arctan (50/(25D))) ' )

Finally, the perceived image I, can be obtained by:
I, = F~1(CSF* ® F(I)), (6)

where ® stands for convolution and F/F ! are the Fourier
transform pair.
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Fig. 4 Scale dependent saliency. (a-b) An input image and its saliency map. (c-d) The image filtered by the CSF filter with viewing distance of one
meter and corresponding scale dependent saliency. (e-f) The image filtered by the CSF filter with viewing distance of two meters and corresponding

scale dependent saliency.

According to Eqn. 4, for a small display size (thumb-
nail size in our case), a pixel may become indistinguishable
from its neighbors to a human observer. Consequently, an
image structure that is salient in the original image may not
appear salient to a human observer when the structure is dis-
played in a small thumbnail. Inspired by this observation, we
propose using scale dependent saliency to encode the scale
information in the final thumbnails.

The calculation of the scale-dependent saliency goes as
follows:

— First, the original image [ is resized homogeneously into
the target thumbnail size?, i.e. the display size, 60 x 60
pixels in our experiment. Denote the resized image as I.

— Then, the perceived image I, is derived from I, accord-
ing to Eqn. 6. Specifically, in our experiment we use a
monitor of 1680 x 1050@65hz and 120 DPI, and all sub-
jects are requested to sit 0.5 meter away from the moni-
tor.

— Finally, the scale dependent saliency S*°*¢(T) is defined
as

Seeete(I) =1 (S(1p)) ©)

where 1 denotes upsampling and S(.) is a saliency mea-
sure, which in our study is defined according to the vi-
sual attention model in (Itti et al 1998).

Figure 4 illustrates the effect of scale dependent saliency.
When the image scale is large enough (a-b), fine details
in the image are perceivable thus the saliency map shows
significant responses in such detail regions, e.g., the texture
of the barb wire fence. However, when the image scale be-
comes smaller (or view from further distance), details fade
out while the main structures survive (c—d). This effect is
more obvious when the image scale gets even smaller (e—
f). The scale dependent saliency successfully identifies the
important structures of the image (e.g., the heart shape) by

2 Rigorously speaking, we should use the resulting image J instead
of I to shrink into the thumbnail size. This however requests the size
of J to be known beforehand which may not be true for some thumb-
nailing algorithms. In addition, though smaller than I, J is still much
larger than the final thumbnail. Therefore the approximation using [
does not bring significant difference in practice.

(C)Sscale(I)

(b) S(I (OI) (e)5*°(I)

Fig. 5 Saliency computation. (a) Input image I. (b) Original
saliency (Itti et al 1998) S(I). (c) Scale dependent saliency S5c@te ().
(d) Objectness map (Alexe et al 2012) O(I). (e) Scale and object aware
saliency S%°(I).

assigning high saliency values to them. Meanwhile, low
saliency values are given to regions of over-fined details.
More examples of scale dependent saliency are shown in
Figure 5.

The proposed scale dependent saliency is modified from
the one in our preliminary study (Sun and Ling 2011). Both
approaches are biologically plausible: the new one works in
the frequency domain while the old one in the spatial do-
main. By working in the frequency domain, the new version
gains some robustness to local noises, which could mislead
the saliency computation and kill important structures due
to shrinking artifacts. In general the two approaches gener-
ate similar saliency patterns. Some examples on which they
disagree are shown in Figure 6, which illustrates that the
new version picks more local structures than so does the old
version.

4.2 Scale and Object Aware Saliency

It is desirable for a thumbnailing algorithm to preserve ob-
ject completeness when removing or distorting parts of an
input image. One difficulty lies in explicitly defining such
completeness. Recently, Alexe et al (Alexe et al 2012) pro-
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Fig. 6 Scale dependent saliency map comparison. Left: input image
1. Middle: scale dependent saliency in (Sun and Ling 2011). Right:
proposed scale dependent saliency.

posed a novel objectness measure, which is trained to dis-
tinguish object windows from background ones. The object-
ness measure combines several image cues, such as multi-
scale saliency, color contrast, edge density and superpixel
straddling, in order to predict the likelihood of a given win-
dow containing an object. Specifically, for a rectangular
window w = (x,y,w, h) with a top-left corner at (z,y),
width w and height h, its objectness is defined as the likeli-
hood Pr,;; (w) that w contains an object.

To get the objectness distribution over pixels, we first
sample n,, windows W = {w; };"| for an input image and
then calculate the objectness map O as the expected object-
ness response at each pixel,

o 1
O =5 > Proyw, ®)
wWEWA(i,j)EW
where I' = max; ; O(i,5) is used for normalization;

(i,7) € w means pixel (4, j) falls in w; n,, = 10000 is used
in our experiments; and we use the objectness code imple-
mented by the authors of (Alexe et al 2012).

The map O(I) is then combined with the scale-
dependent saliency S*°%¢(I) to inhibit regions containing
weak objectness:

§°°(i, j) = §°°'(i, ) - O(i, ) - ©

O(I) is computed directly on I while S*°*°(3, j) is ob-
tained from Eqn. 7. We name the augmented saliency S*°
as scale and object aware saliency (SOAS). Figure 5 illus-
trates some examples.

The proposed SOAS is independent of thumbnailing
transformation. This enables it to be combined with different
image resizing approaches, such as retargeting and cropping
described in the following sections.

3 http://www.vision.ee.ethz.ch/ calvin/objectness/

5 Scale and Object Aware Thumbnail Retargeting

The first proposed SOAT method, SOATY, is a retargeting
method guided by SOAS. To encourage structural smooth-
ness, we choose a continuous model, TPS, for thumbnail
warping. TPS provides a natural balance between warping
smoothness and matching accuracy. A crucial issue is to
find the appropriate control points to harness the warping
artifacts. To solve the problem, we use a discrete retarget-
ing approach, cyclic seam carving combined with SOAR
(Sec. 5.1), to guide the sampling of control points. These
control points are then used to estimate the TPS model. Con-
sequently, our approach can also be viewed as a combination
of discrete and continuous retargeting approaches.

5.1 Cyclic Seam Carving

To guide the TPS warping in SOAT},, we use seam carving
(SC) (Avidan and Shamir 2007) with two extensions: cyclic
seams and SOAS integration.

Cyclic Seams. In the standard seam carving, sometimes the
“best” seam has no choice but to cut across the extent of
objects, which is largely due to the original definition of
“seam”: a continuous polyline from one boundary of the im-
age to its opposite boundary. In this scenario, the resulting
images suffer from damage to well-structured objects. With
these broken object structures in the thumbnails, the thumb-
nail browsing efficiency and accuracy can be seriously hurt.

To reduce the possibility of a seam trespassing objects,
we introduce the cyclic seams as following: an input image
is first virtually warped into a cylinder shape by sticking its
left and right (or top and bottom) margins together. Then
a cyclic seam is defined as the original continuous seam
but on this new virtual “cylinder” image. An illustration is
shown in Figure 7. We name this the extended SC algo-
rithm Cyclic Seam Carving (CSC). Intuitively, CSC allows
a seam that crosses image boundaries to stay away from
highly salient regions. On the other hand, a cyclic seam is
still continuous in most of its segments. Being allowed to
cross image boundaries, a cyclic seam reduces its chance to
cut across foreground objects that usually reside far apart
image boundaries.

SOAS Integration. Our second extension to the original SC
is to augment the energy function with SOAS. We denote
E#e%™ as the original energy used in SC which is based on
the distribution of histogram of gradients, our scale and ob-
ject aware energy I£°° is defined as

Eso — p . Eseam + (1 _ p) . SSO , (10)
where p is the weight and empirically set to 0.3 throughout
our experiments. The improved energy is then integrated in

the CSC algorithm to provide control points needed for es-
timating TPS warping in the next step.
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Fig. 8 Control points sampling. (a) Control points in the original image; (b) Control points traced in the seam carved image; (c) New control points
sampled from the seam carved image; (d) Control points traced in the original image.

Fig.7 Cyclic seam carving (CSC): a cyclic seam (in red line) is shown
on an image picked from the PASCAL VOC 2008 dataset. The photo
is originally taken this way (rotated). Indeed, this image inspired our
idea of CSC.

5.2 Thin Plate Spline Warping

Discrete retargeting methods often generate serious artifacts
when the target image has a size much smaller than the origi-
nal image. In (Simakov et al 2008) a bidirectional similarity
is used to alleviate the problem. We address this issue dif-
ferently by combining a continuous warping model with a
discrete retargeting guidance.

We use the thin-plate-spline (TPS) (Bookstein 1989) for
our continuous warping model. TPS has been widely used
in vision tasks, such as registration and matching, due to its
attractive property in balancing local warping accuracy and
smoothness. Specifically, given two sets of control points
P={p,eR%i=1,2-,m}and Q = {q; € R?,i =
1,2,--+,m;}, where p, corresponds to q;, the TPS transfor-
mation ]?is defined as the transformation from P to () that
minimizes the regularized bending energy £( f)

E(f) =ZII q; — f(p;) >+

an
Rf ., . Bf ., 0,
A//<@> UG+ (G oy

where A is the weight parameter. Then f is estimated as
f = argminy £(f). In our image warping problem, f is
the displacement mapping from the input image to the tar-
get image.

To estimate the TPS model, we need to provide the con-
trol point sets P (in the original image) and () (in the target
image). This can be achieved from the CSC retargeting algo-
rithm. A natural solution is to first define P in the input im-
age and then locate its corresponding () in the target image
by tracing point shifting during the CSC process. However,
the control point pairs obtained this way can be unstable:
if most pixels in a region are eliminated by CSC, control
points who originally resided in this area will be unevenly
clustered in the target image. As a consequence, the esti-
mated TPS model will be intensively affected by these sin-
gular points. Instead, we design a solution to get a uniformly
sampled point set () in the target image. The solution com-
bines two steps described as following (both steps are used
in estimating the TPS model):

— Step One. First, we sample a control point set p (Fig-
ure 8(a)) based on the original image’s saliency distribu-
tion. In particular, the density of Pis proportional to the
saliency values. Then, we trace the displacement of P
during the CSC process. If a control point is eliminated
during a CSC iteration, it will be re-assigned to its clos-
est neighbor. Finally, after the CSC process, we acquire
the corresponding control point set @ (Figure 8(b)).

— Step Two. Instead of using @, the control point set ()
(Figure 8(c)) is sampled uniformly in the target image
generated by CSC. Then, the control point set P (Fig-
ure 8(d)) is generated by mapping @ to the original im-
age using the TPS model estimated by @ and P. The
control point sets P and () are then used to estimate the
warping used in the final retargeting.

Figure 14 shows some examples illustrating the effec-
tiveness of each component in SOATY,.
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6 Scale and Object Aware Thumbnail Cropping

Retargeting methods can be viewed as inhomogeneously
shrinking the input image I to the output image .J. They in-
tend to preserve important information over the whole image
with some potential distortion of local geometric structures.
Such local distortion may however confuse the human per-
ception system, especially when the distortion is as severe
as it is in thumbnailing.

An alternative solution, cropping, on the other hand, dis-
cards all information outside a cropping widow while keep-
ing local structures untouched inside the window. In the
recent evaluation (Rubinstein et al 2010b), manually crop-
ping is considered to be one of the most favorite retarget-
ing methods by human users. However, manual cropping
can be tedious and time consuming, and thus impractical
for real world applications. To design an automatic thumb-
nail cropping algorithm, two issues need to be addressed:
the criterion to evaluate a cropping window and the method
to search a good window according to the criterion. For ex-
ample, in (Suh et al 2003) the classic saliency map (Itti et al
1998) is used as the solution to the first issue and a greedy
searching strategy to the second one.

In this paper we focus on the effectiveness of encoding
scale and object awareness in thumbnailing. As a result, we
choose to extend the cropping algorithm in (Suh et al 2003)
by using SOAS for saliency measurement. Given an image
I defined on a grid 2 and its saliency S°°, the thumbnail
cropping problem is to find a window w* that contains as
much as possible important pixels with a reduced size. In the
following we describe the greedy search algorithm in (Suh
et al 2003), with the proposed saliency S*°. We first define
w(A) as the minimum window that contains at least certain
fraction (i.e. A\) of the total saliency in the whole image, that
is

w(A\) =arg min (area(w)), (12)

weW(X)
where ) is the fraction threshold and

S5 (x
. Z(;{;,y)ew so( y) Y
Z(w,y)EQS (:Z:’y)

is the set of windows whose saliency is no less than A of the
saliency in the whole image.

The exhaustive search for w(\) is computationally very
expensive. This is because, despite using integral images,
optimizing over A is still very time consuming. Instead,
an efficient greedy solution is used: W() is initialized as
the image center and then iteratively merged with the most
salient point outside the current W(\) until it falls into
W(A). After that, the “best” X is found by

W) = {w

A =arg max da'()\), (13)

AE[o--M1]

motorbi ke

Fig. 9 The user interface used in the user study.

where a(\) £ area(W())) is the area of W(\) and [\g..\]
defines the search range (A\y = 0.6 and Ay = 1 are
used throughout our study). Details about A can be referred
to (Suh et al 2003). Finally, the cropping window is chosen
as w* = w(\*).

We name the proposed approach SOAT.. It demon-
strates excellent performance in the user study (Section 7.1).
Figure 15 shows some examples illustrating the effective-
ness of each component in SOAT,. In addition, it is worth
noting that the use of SOAS is not limited to the window
searching algorithm used in this paper.

To facilitate future studies and evaluations related
to the proposed SOAT algorithms, we have made the
Matlab code implementation of SOAT., and the result
images in our experiment available for research usage at
http://www.dabi.temple.edu/~hbling/code_data.htm#SOAR.

7 Experiments

Objective evaluation of thumbnailing algorithms is not easy:
there is no “ground truth” thumbnails for an input image;
and humans’ feeling about the quality of a thumbnail can be
very subjective. For this reason, carefully designed experi-
ments are conducted to assess the SOAT algorithms. We first
perform rigorous quantitative user studies with two different
tasks: an Image Browsing Task and a Subjective Preference
Task, in the context of thumbnailing. We then evaluate SOAT
qualitative in the context where target scales are significantly
larger than thumbnails.


http://www.dabi.temple.edu/~hbling/code_data.htm#SOAR
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Fig. 10 Thumbnails used in the quantitative study. One thumbnail is shown per class per method.

7.1 Quantitative User Study

Our qualitative study contains two different tasks: (1) the
image browsing task similar to the one used in (Suh et al
2003), in which participants are asked to find a thumbnail
that matches given description, and (2) the subjective prefer-
ence task similar to the one used in (Liu and Gleicher 2005),
in which participants are asked to select thumbnails that they
prefer to receive.

Design of study

The image browsing task is designed to measure the ef-
fectiveness (in terms of three criteria) of thumbnails gen-
erated by different methods in image search. This task is
a within-subjects design with thumbnail method as the in-
dependent variable. Browsing accuracy, browsing efficiency
and browsing rank (defined in the paragraph Evaluation cri-
teria) are dependant variables. In this task, a subject is re-
quired to browse and search a target image, described ver-
bally, from a set of image thumbnails randomly tiled in one
page. For example, in the sample page shown in Figure 9,
a subject is asked to visually search one particular thumb-
nail of “motorbike” from a screen of thumbnails of various
classes: “bike”, “train”, “bird”, etc. There exists only one
correct thumbnail (i.e., containing a “motorbike” in the ex-
ample) in each page to avoid ambiguity.

The subjective preference task is designed to determine
which of the compared methods is preferred by users. It
is also a within-subjects design with thumbnail method as
the independent variable. In this task, subjects are shown
two thumbnails at each page and asked to choose their fa-
vorite one. The two thumbnails are generated from different
thumbnailing methods from the same input image. The test
page interface is similar to the one used in image browsing
task except with less thumbnails.

Participants

In the image browsing task, 30 college student volun-
teers have been recruited and none of them has previous re-
search experience related to image thumbnailing*. The dis-
play device is a monitor of 1680 x 1050@65 hz and 120
DPI. Participants sit 0.5 meters away from the monitor with
normal indoor illumination. The test takes about one hour
per subject.

In subjective preference task, 15 college student volun-
teers have been recruited with no related research experience
in image thumbnailing. The hardware and environment se-
tups are the same as the image browsing task.

Image datasets

Experiments have been done using a carefully prepared
dataset. The image set used in the study contains 210 im-
ages randomly selected from the PASCAL VOC 2008/2009
database (Everingham et al 2008). Because the objectness
measurement (used in the SOAS calculation) is also trained
using a subset of PASCAL VOC 2008, we carefully checked
our image selection to prevent any overlap. The selected im-
ages are divided into 14 classes, each with 15 images. These
classes are: aeroplane, bicycle, bird, boat, bus, car, cat, cow,
dining table, dog, horse, motorbike, sheep and train. Images
are also checked inter-class to exclude those multi-labeled in
different classes. For example, an image containing a cat and
a bicycle may be included in both class bicycle and cat; such
images are removed to avoid ambiguity. The image brows-
ing task uses all 210 images while the subjective preference
task uses a subset of randomly selected 105 images.

Thumbnailing methods

For each image in the data set, five versions of thumb-
nails are generated beforehand using different methods in-
cluding scaling (SL), improved seam carving (ISC) (Rubin-
stein et al 2008), automatic cropping (CROP) (Suh et al

4 There is no overlap between these 30 subjects and the 20 subjects
in the experiment of our previous study (Sun and Ling 2011).
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[ Comparison [ Mean [ Std. ] p-value ]
SOAT, vs. SL 0.5572 0.1899 0.2801
SOAT, vs. ISC 0.7568 | 0.0871 5.6867x10~
SOAT., vs. CROP 0.5235 | 0.0476 0.0874

[ SOAT., vs. SOAT,,, | 0.7008 | 0.0745 | 9.7937x10"° |
SOAT¢p vs. SL 0.3931 0.1753 0.0400
SOATp, vs. ISC 0.6584 | 0.0583 14931107
SOAT};, vs. CROP 0.3235 | 0.07826 | 1.2266x10~F

Table 1 Preference ratios in the subjective preference user study.

2003), and the proposed SOAT;, and SOAT. SL is in-
cluded because it is straightforward and widely used in cur-
rent real world applications. ISC is an improved version
of SC and was shown to outperform SC in our prelimi-
nary study (Sun and Ling 2011). Furthermore, the proposed
SOAT, can also be viewed as an extension of SC since CSC
is used to guide the model estimation in SOATy,. CROP is
included because cropping is considered to be one of the
users’ favorite methods in a recent study (Rubinstein et al
2010b) and SOAT., borrows the window searching algo-
rithm from CROP.

Though there exists many other excellent image resizing
algorithms, we limit our selection to the above ones for sev-
eral reasons: First, the limitation in the number of subjects
prevents us from including too many methods to perform
valid statistical analysis. Second, the selected methods are
most related to ours as described above. Third, the source
codes of ISC°> and CROP® are publicly available from the
original authors, which makes it easier for fair comparison.

Test procedure

Image Browsing Task: Each subject is requested to browse
a total of 210 pages. In each page, the subject sees a word
describing the class of the target and 100 image thumbnails
aligned in a 10 x 10 grid. Among the 100 thumbnails, there
is only one that matches the description and it is placed ran-
domly. 99 other “filler” images are chosen randomly from
the rest of the classes with restrictions: the potential class
conflict due to appearance ambiguity is taken into consid-
eration. For example, motorbike images and bicycle images
will not appear in the same page since they are highly simi-
lar in appearance, especially when displayed in small scales.
For each page, we set up a mandatory 60 second time-out to
limit the time duration of the experiment. In failure to find
the correct image in 60 seconds from the current page, the
user will be redirected automatically to next page. For every
thumbnail position on the screen, one of the five versions of
thumbnails is randomly picked to be presented. The subject
needs to click on the correct one among the 100 thumbnails.
The time cost to find the result and the selection of each page

> http://people.csail.mit.edu/mrub/index.html#code_seamcarving
6 http://www.dabi.temple.edu/ hbling/code/auto_thumb.zip

are recorded for every user. The records of the first 10 pages
are discarded to allow the subjects get familiar with the sys-
tem. Example thumbnails from different methods are shown
in Figure 10. The order of the pages is randomized for each
subject.

Subjective Preference Task: Each subject is requested to
browse a total of 105 images x 7 comparisons = 735 pages.
Each page shows two different thumbnails aligned side by
side, with a word describing the class of the thumbnails
shown on the top. The two thumbnails are generated from
the same input image with two different algorithms that ran-
domly selected from one of the seven pairs listed in Table 1.
Then, one of the two thumbnails is randomly placed on the
left while the other on the right. A subject is forced to choose
one of the two thumbnails depending on subjective prefer-
ence. The selection of left/right side and name of the two
methods are recorded for every user. Order of pages is ran-
domized individually.

Evaluation criteria

Image Browsing Task: Three criteria, browsing accuracy,
browsing efficiency and browsing rank, are used in perfor-
mance evaluation and defined below.

First of all, we denote nr as the number of thumbnailing
methods and n,, the number of subjects in the experiment
(n = 5 and n,, = 30 in this study). For the it" user, denote
NF as the number of pages in which thumbnails generated
by the k" algorithm are used as the searching target. Among
these N} pages, suppose there are M} pages in which the
user correctly identifies the target. The time cost the i*” user
took in each correctly identified page j in M is t} .

The browsing accuracy for the k" algorithm over the
whole experiment is defined as:

1 < MF

7§ i (14)
k

N 4= N;

The browsing efficiency for the k'" algorithm over the
whole experiment is defined as:

MF

1 s 1 .
> At (15)
i=1 "t =1

Browsing efficiency may be affected by many subjec-
tive factors such as browsing habit and mood. To address
this issue, we include a less user-sensitive measure, brows-
ing rank. For the i*" user, we rank the thumbnailing methods
according to the average searching time for his/her records.
Specifically, we denote ¥ as the rank of the £*" thumbnail-
ing algorithm, such that ¥ = 1 is the best and 7¥ = n the
worst. Then, the browsing rank for the k' algorithm over
all users is defined as:

1
— 30k (16)
T



[ Method [ SL [ ISC [ CROP [ SOAT,, [ SOAT. |
Browsing accuracy (%) 90.47+8.1 | 88.40£6.8 | 93.92+6.5 | 92.56£7.3 | 95.04+5.2
Browsing efficiency (sec.) | 13.70+3.5 | 14.79£3.4 | 12.274£3.3 | 11.444+3.0 | 11.20+2.8
Browsing rank ([1..5]) 3.69+1.1 4.444+1.0 2.91+£1.1 2.13£1.2 1.841+0.9

Jin Sun, Haibin Ling

Table 2 Average browsing accuracies, time costs, and ranking of methods in the quantitative study. SL, ISC, CROP stand for Scaling, Improved

Seam Carving, Automatic Cropping respectively.

The three criteria capture different but correlated charac-
teristic aspects of a thumbnailing algorithm. A major reason
to include browsing accuracy is to ensure that the thumb-
nails generated by SOATs do not bring extra difficulties for
recognition. Consequently, we are more interested in brows-
ing efficiency and browsing rank.

Subjective Preference Task: In this task we have np = 7
pairs, n,, = 15 participants and use preference ratio as the
criterion. For the ' user, denote N as the number of pages
presented to him or her containing thumbnails from the p*"
pair, and denote M? as the number of pages voted in favor
of the first thumbnailing algorithm in the p*”* pair. The Pref-
erence ratio of p*" pair is then defined as:

A7)

Results and Analysis

Image Browsing Task: The browsing accuracies, efficiencies
and ranks of tested methods are summarized in Table 2. The
box plots of the three criteria are given in Figure 11. The
results show in general the effectiveness of the proposed
SOAT framework for thumbnailing.

From Table 2, we can see that all methods have achieved
high accuracies (around or above 90%), which confirms our
assumption that these thumbnailing methods do not bring
extra difficulty in recognition. Amongst all methods, the
proposed SOAT,, performs the best. Before drawing con-
clusions about browsing efficiency, which is our focus in
evaluation, we first perform the following statistical analysis
to validate the significance between different approaches.

For a rigorous evaluation, we have conducted an one-
way ANOVA analysis on the browsing efficiency for all
five methods. The F'-value is 23.14 and the p-value is
5.20x107'°, implying that the five methods are signifi-
cantly different in browsing efficiency. Furthermore, a multi-
ple comparison test using the information from ANOVA has
been performed to distinguish if our method is significantly
different in pair-wise comparison with other methods. Re-
sults are given in Table 3. The 95% confidence intervals for
all compared mean differences have rejected the hypothesis
that the true differences are zero. In other words, the dif-
ferences between our methods (SOAT., and SOAT,) and
other methods (SL, ISC and CROP) are significant at 0.05
level. The SOAT,, and SOAT, themselves do not show a
significant difference statistically though.

The Kruskal-Wallis test has been used to analyze the
browsing rank. The p-value is 3.34x10~!®, indicating that
the five methods are significantly different in browsing rank.
Results from pair-wise comparison tests are reported in Ta-
ble 3, which show again significant differences between our
methods and others at 0.05 level.

From the results and analysis we have the following ob-
servations:

— The proposed SOAT., algorithm performs the best in all
three criteria. In particular, it significantly outperforms
the straightforward scaling approach. This is consistent
with the previous discovery (Suh et al 2003).

— The retargeting-based SOAT (i.e. SOAT ;) beats CROP
in browsing efficiency and rank, but not in browsing ac-
curacy. This suggests that the browsing efficiency and
browsing accuracy are not necessarily consistent.

— Since SOAT;, and SOAT, are extended from SC
and CROP respectively, the superiority of SOAT;, and
SOAT, over SC and CROP validates the benefit of en-
coding scale and object awareness in the SOAT algo-
rithms.

— It is not surprising that ISC performs not as good as
other approaches. Because a typical retargeting method
like ISC is not designed for dealing with targets with ex-
tremely small scales. In contrast, SOAT algorithms per-
form better by explicitly taking into account thumbnail
relevant factors.

In addition to the above analysis, we plot accuracy ver-
sus time cost in Figure 12. From the figure we find that
browsing accuracy in general decreases as the time cost in-
creases. That is to say, even with much more time, a user is
unlikely to find the correct answer if he or she did not find it
earlier.

Subjective Preference Task: The means and standard devia-
tions of preference ratios of tested method pairs are sum-
marized in Table 1. We have done a t-test on each pair
with the null hypothesis that the mean of the distribution is
0.5, meaning that users have no preference between the two
methods. The p-values are reported in Table 1. Note that all
pairs are significantly different at 0.05 level except (SOAT,,,
SL) and (SOAT,,, CROP). We have following observation
based on the results and analysis:

— The proposed SOAT,, algorithm outperforms all other
algorithms. In particular, the preferences of SOAT, over
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Fig. 12 Browsing efficiency versus browsing accuracy.

SOAT,, and ISC are statistically significant. This su-
periority should be attributed to the thumbnail specific
saliency and the distortion resistance of cropping.

The preference of SOATYy,, against ISC confirmed our
efforts on reducing distortion and maintaining structure
smoothness in algorithm design.

Interestingly, SOATy, is less preferred than CROP and
SL, though it beats both in the image browsing task. This
suggests that humans may use different mechanisms for
the two tasks. In particular, a visually preferable thumb-
nail is not necessarily efficient for image browsing.

7.2 Qualitative Experiments

While we are interested mainly in tiny thumbnails, it is also
worth investigating how well the proposed method performs
when the size change is less drastic. Recently, Rubinstein
et al (2010a) released a benchmark dataset, RetargetMe, to-
gether with the results from many state-of-the-art image re-
targeting methods. Thanks to their efforts, we run the pro-
posed SOAT algorithms on the dataset for qualitative inspec-
tion. For a fair comparison, our methods are tuned to create
target images in the same scales used in (Rubinstein et al
2010b), i.e., 75% in the horizontal dimension of the original

image sizes. Some example results are shown in Figure 13.
We visually check the results rather than designing another
subjective preference user study because the user study is
only appropriate in the context of thumbnailing. Other retar-
geting methods in this dataset are not designed for thumb-
nailing problems hence it will be unfair to get them involved.

By checking the results, we feel it is hard to visually
pick out a method that is better than all others. In particular,
the results from SOAT algorithms look similar to the results
from others. The best and worst results for different input
images often come from different methods.

7.3 Analysis and Discussion

Analysis of components in SOAT. To further understand
the role of each components introduced in the SOAT frame-
work, we design different “intermediate” versions of SOAT
algorithms with various combinations of components. We
then apply these algorithms to the dataset used in the quan-
titative study and visually check the results.

Figure 14 shows some results from various combinations
of the components in SOAT . First, the results suggest that
the use of TPS model drastically improves the visual quality
of resulting thumbnails. This is mainly due to the local struc-
ture preservation by TPS. Second, the integration of scale
and object aware information helps in some cases. The use
of cyclic seams, in contrast, affects only marginally to the re-
sults, indicating that CSC is a conservative extension of SC.
Finally, in average the thumbnails by SOAT, are visually
better than those from other combinations.

Figure 15 shows some results from various combina-
tions of the components in SOAT.,. Similar to the cases for
SOAT,,, the integration of scale and object aware informa-
tion in general helps improving the visual quality of result-
ing thumbnails. However, the improvement from CROP to
SOAT,, is less impressive than that from SC to SOAT,.
This is because the CROP algorithm, which preserves per-
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Browsing efficiency Browsing rank

Comparison Lower | Difference in means | Upper | Difference in means | p-value
SL vs. SOAT., | 1.4327 2.3317 3.2306 1.84 5.0883x10~ 08
ISC vs. SOAT., | 2.6861 3.5851 4.4841 2.59 2.3585x10-10
CROP vs. SOAT., | 0.0550 0.9540 1.8530 1.06 1.4202x10-04
SL vs. SOAT:, | 1.4232 2.3222 3.2212 1.56 3.5359x 1096
ISC vs. SOAT, | 2.6767 3.5756 4.4746 2.31 1.6757x10~99

CROP vs. SOAT;;, | 0.0456 0.9445 1.8435 0.78 0.0108

| SOAT.; vs. SOAT, | -0.9084 | -0.0095 | 0.8895 | -0.28 | 0.4054 |

SL vs. ISC -2.1524 -1.2534 -0.3545 -0.75 7.3706x 10~ %4

SL vs. CROP 0.4787 1.3777 2.2766 0.78 0.0041
ISC vs. CROP 1.7321 2.6311 3.5301 1.53 1.2831x10-06

Table 3 Browsing efficiency: Tukey’s least significant difference (LSD) test for multiple comparisons. The 95% confidence intervals are [Lower,
Upper]. Browsing rank: Kruskal-Wallis test.

SM SNS SV
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Input CRman LG MO QP SC WARP CROP SOAT:, SOAT,

Fig. 13 Example results on the RetargetMe dataset. From left to right: the input image, manual cropping (CRman), energy-based deformation
(LG) (Karni et al 2009), multi-operator media retargeting (MO) (Rubinstein et al 2009), quadratic programming (QP) (Chen et al 2010), seam
carving (SC) (Avidan and Shamir 2007), scaling (SL), shift-maps (SM) (Pritch et al 2009), optimized scale-and-stretch (SNS) (Wang et al 2008),
streaming video (SV) (Krihenbiihl et al 2009), nonhomogeneous warping (WARP) (Wolf et al 2007), automatic cropping (CROP) (Suh et al 2003),
SOAT¢;, and SOAT.. All results, except those of CROP, SOAT, and SOAT,,, are from (Rubinstein et al 2010b).

fect structure smoothness inside the cropping window, is to
some extent similar to the role of TPS in SOATY,.

In summary, both SOAT,, and SOAT, benefit from ad-
dressing the three issues: thumbnail scale, object complete-
ness, and structure smoothness.

Discussion and error analysis. We summarize the number
of failures in the image browsing task in Table 4, where a

failure means a user failed to correctly identify the target
thumbnail in a given page. From the table we have several
observations: (1) There is not a single method that beats all
others over all classes. This phenomenon is consistent with
the observations in our qualitative study. (2) SOAT., works
the best in half of the classes, which confirms the results in
our quantitative study. (3) It is interesting that the recogni-
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Input SC CSC SC+S° SC+0O SC+TP SOATy, Input SC CSC SC+S°® SC+O SC+TP SOATy,
Fig. 14 Effectiveness of different components in SOAT},, details in Sec. 7.3. Notations: SC+S*° denotes for SC with scale-dependent saliency,

SC+O for SC with objectness, SC+TP for SC followed by the TPS warping. One example is chosen per class per method.

Input CROP CR+S°® CR+O SOAT., Input CROP CR+S® CR+O SOAT..

Fig. 15 Effectiveness of different components in SOAT ., details in Sec. 7.3. Notations: CR+S* denotes for CROP with scale-dependent saliency,
CR+0O for CROP with objectness. One example is chosen per class per method.
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Input CROP SOAT;:;, SOAT.,

Fig. 16 Examples where the SOAT¢,, thumbnails fail to be recognized.
The classes from top to bottom are: bike, dog, bus, horse, and cat.

tion of images from “natural” classes (e.g., dog and cow) are
in general more difficult than those from “artificial” classes
(e.g., train and bicycle).

Figures 16 and 17 show some failure examples in the
quantitative study for SOAT;, and SOAT,, respectively.
Thumbnails from other methods are also shown for refer-
ence. The failure of SOAT}, is mainly due to large geomet-
ric distortion, e.g., the dog example, which causes trouble
for human perception. The failure of SOAT,, on the other
hand, is mainly due to the removal of some background area
(context information) that helps users to understand the im-
age content at a small scale. One interesting example is the
bicycle example in Figure 17. The cropping window focuses
on the rider rather than the bicycle itself. The window seems
to be accurate but not consistent with the class label, which
is bicycle, hence resulting in a recognition failure.

It is worth noting that one challenge for cropping-based
thumbnailing appears when the original image has dis-
tributed saliency (e.g., multiple foreground objects). In such
a case, retargeting-based solution may perform better by
squeezing out unimportant regions.

8 Conclusion

In this paper we proposed encoding scale and object aware
information for thumbnail generation, with a new frame-
work named scale and object aware thumbnailing (SOAT).
Two thumbnailing algorithms, namely SOAT, and SOATL,,
have been designed to combine the scale and object aware
saliency with image retargeting and thumbnail cropping re-

SR

CROP SOAT;, SOAT..

=

Input ISC

Fig. 17 Examples where the SOAT ., thumbnails fail to be recognized.
The classes from top to bottom are: sheep, bicycle, train, bird, and boat.

[ Category | SL | ISC | CROP [SOAT,, | SOAT, |

aeroplane 7 2 2 7 2
bicycle 1 0 0 3
bird 10 11 5 6 7
boat 3 5 8 6 2
bus 2 4 4 1 2
car 8 8 4 3 6

cat 13 6 6 9 9
cow 20 24 6 16 6
dining table 7 2 3 5 1
dog 15 33 11 19 10
horse 7 18 4 7 2
motorbike 5 5 7 6 4
sheep 16 24 12 7 10
train 4 3 5 1 3

a
9
o
%

| Average | 84 | 104 | 55 |

Table 4 Numbers of failure cases in the browsing user study for dif-
ferent categories.

spectively. To objectively evaluate the proposed algorithms,
we conducted user studies with an image browsing task and
a subjective preference task. The statistical analysis on the
study strongly suggests the effectiveness of the SOAT algo-
rithms, especially the cropping-based version, i.e., SOAT;.
The algorithms were further tested qualitatively on the Re-
targetMe benchmark and demonstrated state-of-the-art per-
formances.

There are two directions that we are interested in the fu-
ture. First, for static images, we expect more effective ways
to utilize scale and object awareness for thumbnailing. In
particular, the currently used heuristic cropping algorithm
can be replaced with more principled solutions. Second, for
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video sequences, we are interested in investigating the scale
and object awareness in the spatio-temporal domain.
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