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Abstract. In this supplementary document, we provide proofs of Proposition 1
(Section [2) and Proposition 2 (Section [3), and plots for the OPE performance
of the top ten trackers on the attribute subsets of the CVPR2013 Visual Track-
er Benchmark (Section ). Firstly, we begin with an introduction of partitioned
matrix inversion theorem in Section[I] which is crucial to the proofs.

1 Partitioned Matrix Inversion Theorem

Recall in the main paper that, G, = (géi gég) and G;Hl = (]fT ﬁ) are the
(nr,+ny) X (ng+ny) Gram matrix (symmetric, non-singular) and its inverse of all the
training (auxiliary and target) samples and unlabeled samples. Actually, G,;; and G;Hl
are partitioned in different ways. Gz, and Gy are the ny, X ny, and ny X ny matrices
respectively; while A and M are the ny X nr and (ng + ny) X (n4 + ny) matrices
respectively. For the convenience of the using of partitioned matrix inversion theorem
in Proposition 1 and Proposition 2 respectively, we additionally use two different ways
to partition G,); and G;Hl.
As for Proposition 1, let G, = (GTT Grz
Gzt Gzz
nr and (na+ny) X (na+ny) matrices respectively. From partitioned matrix inversion
theorem,

), where G and Gz 7z are the np x

M= (Gyz — GsrGrhGrs) ', (1)
B=-G;+GrzM, (2)

where (M_l)T =ML

. _ Ar B
As for Proposition 2, let Galll = (B% ML ), where Ay, and My, are the ny, X np,
L L
and nyy X ny matrices respectively. From partitioned matrix inversion theorem,
- -1
M, = (Gyu — GULGLiGLU) , (3)
B, = -G GLuMy, “)

AL =Gy, +BM;'B] . o)
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2 Proof of Proposition 1
Proposition 1 By defining the prior Gram matrix G,y over all the training and unla-

beled samples, we can hence determine p and G in Eq. (8) of the main paper for our
GPR based observation model inference as follows: p = —M 7lBTyT, G=M"'

Proof. In Eq. (10) of the main paper,
1 -
Q2(za,20) = =5 ()™ + G|+ (2 - )" 67! (2 - )

1 _
=-3 <ln|Ga11| + (v# 27) G (yZT>> +c, (6)

where z = (:A> and zT = (ZE Z?}) Recall G;Hl = ( ) in the main paper, then
U

B'M
(v72") G (YT) = yrAyr +2' By, +y7Bz + 2" Mz )

Because

z-—p)' G z—p) =p"C  p—p "G z—2"G  p+2"G 7'z, (8)
when we set 4 = —M_IBTyT andG =M1,

1

c22<zA,zU>=—5 (n(2m)" " 4 1/G+(2- )" 6! (2-p))
— (0|Gan|— "G '2—2" G p+2"G ' 2+ TG 410 |G| —In| G | +1n(27) A1)
— (In|Gan|+y;Bz+2" By, +2"Mz+y]BM "By, +1n|G|—In|Gp| +1n(27r) 410

In|Gan|+yrAy,+z BTy, +yrBz+z"Mz)+c;

NJ\)—‘N)M—‘N)M—*[\DM—‘

-1(¥r
<1n|Gan+( z") G < . )) +ar )
where ¢; = —1 (y}(BM_lBT —A)yr + In|G| — In|Gay| + In(27)matmv), O
3 Proof of Proposition 2

Proposition 2 The optimal value 74 is formally given by:

Za = arg max Q1 + Q2

zAER™A
nr 1 y
= arg max Z In (P (yi|2i)) — 3 (y; z}) GZi ( T) +c2, (10)
zp€ER™A . C <A
j=nr+1
nL

where Q1(z4) = 4 S In (P, (yilzi)) and ca = ¢1 — %ln|GaH|.
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Proof. As for Qq, recall Q1(z4) = In (P, (y4|z4)) in Eq. (9) of the main paper, then

Q1(za) =In(P; (y4lza))

nr
=In H Py (yili)
j=nr+1

nr

> (P (yilz) -

j=nr+1

1)

As for ()2, recall Eq. (11) of the main paper

1
Qua(zasz) = — (m(%)”“ﬂv tlGl+(z-p) Gz u))
1 _
=—3 (lnIGanl +(v" 25) G (gj)) +es (12)
where y = <ZT> andy' = (y; ZE). Recall Eq. (12) of the main paper, let
A
2y = GuLGr} @) =GurGrLy. (13)

Then

(v 2) G (sz
=y"(GLL+BM['B])y—2y"G;GLuM.Gu G y+Y G GLuMLGy Gy
=y" (GL+BLM;'BL) y—y' G ;GLuMLGurGrry

=y"G Ly +y"BM; 'Bly—y" (GLEGLoM) ML (GLLGLuM,) " y

=y G iy +y'B.M; 'Bly—y"B,M; 'Bly

=y"Gy 1y

) =yTALy +2Bly +y"Brzy + z;Mrzy

= (V7 24) 611 (ZZ) - (14)
So Q2 can be written as
Q2(za,2u) = —% (¥ 23) Gr1 (ZT) e 111f1|Gaun|
A 2
-3 62 6il (yj> +ez s (15)
where co = ¢1 — %ln|Gan|. O
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4 Attribute-based OPE Performance on the CYVPR2013 Visual
Tracker Benchmark

The plots for the OPE performance of the top ten trackers on the attribute subsets are
shown from Figure [I] to Figure [3] From these figures, we can see that our proposed
new tracker TGPR outperforms the state-of-the-arts in most attribute subsets. In the
fast motion subset, low resolution subset, scale variation subset and out of view subset,
TGPR also achieves comparable tracking results with the state-of-the-arts.
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Fig. 1: The value appears in the title is the number of sequences in that sub-dataset
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Success plots of OPE - deformation (19)
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Precision plots of OPE - deformation (19)
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Precision plots of OPE - illumination variation (25)

08

08

06

05-

04

03-

02-

0.1-

— TGPR [0.650]]
SCM [0.594]
o VTS [0.573]
— Siruck [0.558]
VTD [0.557)
TLD[0537]

1 CSK [0481]
s DFT [0.475]

20 30 50
Location error threshold

Precision plots of OPE - in-plane rotation (31)
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Fig. 2: The value appears in the title is the number of sequences in that sub-dataset
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Success plots of OPE - occlusion (29)
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Precision plots of OPE - occlusion (29)
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Fig. 3: The value appears in the title is the number of sequences in that sub-dataset
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