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Cross gender-age trabecular texture analysis in cone beam 

computed tomography 

Purposes:  To investigate whether multiple texture features in different regions-of-interest (ROIs) 

on cone beam computed tomography (CBCT) are correlated with gender-age variation of 

trabecular patterns.   

Methods: CBCT volumes from 96 subjects were used. The data set was divided into four gender-

age subgroups including male younger (MY) than 40 years, male older (MO) than 40 years, female 

younger (FY) than 40 years, and female older (FO) than 40 years. For each volume, cubes 

containing trabecular patterns at four ROIs in the jaws were manually cropped. Eighteen distinct 

texture features were calculated and their correlation with gender-age variations at different ROIs 

was studied through t-test statistical analysis.  

Results:  For the 432 test pairs with different gender-age groups at different ROIs and texture 

features tested, 149 of them were shown to be statistically different at the 0.05 level and 60 at the 

0.001 level. These features can therefore capture changes in trabecular patterns and have the 

potential to be used for trabecular analysis. Furthermore, fractal features were found to be better 

than intensity features in separating different gender-age groups. Trabecular patterns in the body of 

the mandible were more correlated with gender-age changes than other ROIs.  

Conclusions: Multiple texture features on CBCT were found to be correlated with the cross 

gender-age variation of trabecular patterns. The results support the use of CBCT for advanced 

trabecular analysis, including osteoporosis screening tools in the jaws. 

Keywords: cone-beam computed tomography, osteoporosis, radiology, fractals, computer -assisted 

image analysis 

 



Introduction 

 

As a major health problem in the United States, osteoporosis afflicts 55% of Americans 

aged 50 and above. 1 Early diagnosis of osteoporosis is very important to prevent more serious 

complications such as hip fracture. The current gold standard for osteoporosis diagnosis for senior 

patients is based on the bone mineral density (BMD) measured by the dual energy X-ray 

absorptiometry (DEXA) in the hip and spine region. 2 However, when applied to routine examination 

for osteoporosis screening, such a gold standard may introduce a significant financial burden.  

A potential low cost osteoporosis prescreening method is through the analysis of dental 

imaging data, which is collected during routine clinical dental examination at almost no additional 

cost. In particular, trabecular bone structures in the jaws have been studied for their correlation with 

bone porosity. 3- 7 Despite these studies, it remains an open problem to effectively use dental data 

for osteoporosis prescreening. One of the major reasons lies in the insufficiency to use a limited 

number of features. In particular, most previous work studies only a few image features (mostly one, 

often restricted to one region-of-interest), which are not discriminative enough for osteoporosis 

prescreening due to the large variance and noise in dental data. In fact, many researchers have 

pointed out the necessity of introducing advanced algorithms to integrate richer image features for 

dental image-based osteoporosis prescreening. 5, 6, 8  

The objective in this study was to investigate multiple texture features and multiple regions-

of-interest (ROI) in cone beam computed tomography (CBCT) that are correlated with the change 

in trabecular patterns. Based on the fact that trabecular patterns vary across gender and age, 9 it 

was hypothesized that these features and ROIs provide discriminative information for cross 

gender-age trabecular analysis in the jaws. Consequently, CBCT volumes from different gender-

age groups were used to explore the discriminative power of different texture features.  



 

Materials and Methods 

 

CBCT Data Capture 

In order to evaluate the proposed method, a dataset was used which contains 96 

anonymized 3D CBCT volumes from four gender-age subgroups including female younger (FY) 

than 40 years, female older (FO) than 40 years, male younger (MY) than 40 years, and male older 

(MO) than 40 years. In general, senior patients have a high probability to be osteoporotic or to have 

osteopenia when compared with young patients. In the clinic it was also found that some female 

patients showed osteoporotic changes in their 40s. Therefore 40 years of age was used as a cut off 

in our experiment. Table 1 gives a summary of the gender-age distribution of the subjects. The 

dataset was obtained from 96 dental implant patients who had no pathology in the jaws. The CBCT 

scan was obtained by using an i-Cat machine (Imaging Science International, Inc., Hatfield, PA, 

USA) with 0.3 mm voxel sizes, 14 bits grayscales, and 8.9 second scan times. The number of 

slices in one CBCT volume is 327. The project was approved by our institutional review board 

(IRB). 

No particular calculation was performed to determine the total number of samples and all 

96 volumes in the original collection were used. The differences between the sample sizes of the 

groups were taken into account when performing statistical analysis. In particular, the sample sizes 

were used in the t-tests. 

For each volume, a dentist manually cropped eight cubes from eight different locations in 

the jaws, including areas apical to the maxillary left and right premolars, mandibular left and right 

lateral incisors and first molars, and left and right condyles. Each cube is a volume of 19×19×19 

voxels containing trabecular structures of size 5.7×5.7×5.7 mm3. The size was chosen to maximally 



enclose a trabecular pattern while containing little non-trabecular material. Some example cubes in 

the dataset are shown in Figure 1. In the rest of the paper such cubes were called trabecular cubes. 

Considering the left-right symmetry, the eight locations were grouped into four ROIs including ROI 

1 (the maxillary premolars), ROI 2 (the mandibular first molars), ROI 3 (the mandibular lateral 

incisors), and ROI 4 (the left and right condyles). The left-right symmetry was not calculated and 

the group of left-right ROIs increased the samples in the statistical analysis. 

 

TEXTURE FEATURES 

First, the set of collected trabecular cubes was defined as },...,,{ 21 NpppP  , where 

896768 N  is the number of trabecular cubes cropped from the 96 dental CBCT volumes. 

Each cube Pp  has 191919   voxels and ),,( kjip  indicates the CBCT intensity of the 

),,( kji -th voxel in p , 19,,1  kji . In this paper the following texture features were explored: 

1. Mean intensity )( p . The mean intensity of a cube p  was defined as 
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    where 1919196859 M  is the number of voxels in a cube. 

2. Intensity histogram )).(),...,(),(()( 821 phphphph   The intensity histogram captures 

the intensity distribution within a trabecular cube p  and therefore provides much richer information 

than the simple mean intensity. Due to its strong descriptive power, intensity histogram has been 

recently popularly used in image processing and pattern recognition for image and texture 

description. 10, 11 In this study, eight intensity bins were defined as 8,...,1:],( 1  mmm  , such that 

1  and 9  indicate respectively the lower and upper bounds of intensities in the cube p  as below 
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8/)( 191   mm  for 7,...,1m . Then, the m -th component of the intensity 

histogram of the cube p  was defined as 

   })),,(:),,({(#)( 1 mmm kjipkjiph  , 

where ' # ' indicates the cardinality of a set. More specifically, )( phm  was the number of 

voxels whose intensities fell in the range ],( 1mm  . Eight bins were used mainly for two reasons. 

First, by using eight bins, each bin received an average of about 857 (≈6859/8) voxels, which were 

sufficiently large for constructing statistically meaningful histograms. Second, very large numbers of 

bins were not used since they might be sensitive to intensity noises and histogram quantization 

problems, which have been observed in the field of pattern recognition and image analysis. 12 

3. Fractal dimension )(p . Fractal dimension (FD) has been used to capture trabecular 

texture information. 4, 13- 15 For a trabecular cube p , a 3D point set was first created as 

}),,(:),,{(  kjipkji , where )(24.0 191    was the threshold to filter out 

irrelevant background voxels in p . The constant number 0.24 was determined according to the 

visual inspection. More specifically, the threshold helped to discard the majority of background 

voxels, and therefore allowed the fractal dimension to focus on trabecular voxels. In other words, 

when using this threshold, the point set  contained most of the trabecular vodels and ignores the 

majority of background voxels. Then )(p  was calculated as the fractal dimension of set   using 

the box-counting approach. 16 Specifically, let the three-dimensional Euclidean space be covered by 

a mesh of three-dimensional cubes with side length r  (i.e., r -mesh) and a counting function 



),( rc   was defined as the number of r -mesh hypercubes that intersect  . Then the box-

counting fractal dimension )(p  was defined as 
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In practice, to approximate the process of 0r , the slope of )),(log( rc   was 

estimated for a decreasing side-length sequence, 2,4,8,16r (such that 1,2,3,4log r ), using 

the least squares method.  

4. Multifractal spectrum ))(),...,(),(()( 821 pppp   . Due to the complexity of 

trabecular patterns, it may be insufficient to describe them using a single fractal dimension. 

Multiple-fractal spectrum (MFS) is a natural extension to overcome this limitation. 17, 19 A cube p  

was first partitioned into eight disjoint point sets },...,,{ 821   such that  

 8,...,2,1},),,(:),,{( 1   mkjipkji mmm  . 

Then, the m-th element )( pm  was defined as the fractal dimension of m  calculated by 

the box-counting method described above. Eight disjoint sets were used for the same reasons 

eight bins were used for intensity histogram. The partition procedure provides MFS with robustness 

against common pattern deformations such as rotation and scaling, since MFS was known to be 

invariant under the bi-Lipschitz transformation, 17 which subsumes rotation and scaling.  

 

STATISTICAL METHODS 

Statistical analysis on the calculated features is needed to study their effect on separating 

gender-age groups. One approach is to study the variances and covariances of these features 

among all four gender-age groups through ANOVA. More specifically, for a given feature, the null 

hypothesis is that the feature generates the same sample mean for all four groups. However, since 



a long term purpose of the study is to prepare guidance for feature selection in future statistical 

prediction tools, more interests have been shown in finding features that can separate two gender-

age groups. Consequently, two-sample t-test is more suitable, which is in fact a special case of 

ANOVA in that only two groups of samples are involved. 18  

The two-sample t-test was used to study the effects of gender-age on the calculated 

features. Since there were four gender-age groups in the study, six group pairs were created for 

comparison: (FO, FY), (FO, MO), (FO, MY), (FY, MO), (FY, MY) and (MO, MY). For each gender-

age pair, a statistical analysis for each texture feature (out of 18) on each ROI (out of 4) was 

conducted. As a result, there were in total 432=6×4×18 gender-age test pairs on different ROIs and 

features, as summarized in Table 2. 

For each of the 432 test pairs described above, the two-sample t-test was performed to 

compare them with null hypothesis (H0) and alternative hypothesis (HA) stated below: 

 H0: Data of the two categories are from normal distributions with equal means. 

 HA: Data of the two categories are from normal distributions with different means. 

The test statistic t  was defined as 
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where 1  and 2  are the sample means of the two categories under comparison; 1n  and 

2n  are the numbers of samples in the two categories; and 2S  was defined as 

,
2

)1()1(

21

2
22

2
112





nn

SnSn
S  



where 2
1S  and 2

2S  are the sample variances of the two categories respectively. Finally, the 

p-value of the t-test was calculated from the test statistic with respect to the degree of freedom 

221  nnd .   

 

Results 

 

The p-values of the t-tests on all gender-age pairs at different ROIs with different features 

were reported in Table 2. The results with p≤0.05 were highlighted in the table. In addition, all 

these p-values were plotted in Figure 2 for better illustration. From these results it could be 

observed that many of the tested features (149 out of 432) were correlated significantly with the 

gender-age variation at the 0.05 level, with some of them (60 out of 432) at the 0.001 level.  

The effectiveness of different features, ROIs, and gender-age pairs in capturing the cross 

gender-age trabecular variations was also studied in this paper. First, for the effectiveness of a 

specific feature, the times it correlated significantly (p=0.05) with different gender-age groups at 

different ROIs have been counted. These numbers were summarized in Table 3. The average 

effectiveness of the two groups of features, i.e., intensity features and fractal dimension features 

was also calculated. Second, the numbers of effective features for each gender-age pairs and 

ROIs were summarized in Table 4. The results illustrated how the proposed features in general 

were correlated with the variation of trabecular patterns across different gender-age groups at 

different ROIs.  

 

Discussion 

 



Variations in trabecular bone patterns have been known to reflect bone density change, 

which suggests the potential of analyzing trabecular patterns for prescreening bone diseases such 

as osteoporosis. In the past few decades, trabecular bone structure analysis has been studied in 

various biomedical contexts. The importance of trabecular perforations in the development of 

osteoporosis has been introduced by Parfitt et al. 20 Previous research has also explained the 

relation between the profound disintegration of the trabecular bone network and certain bone 

disease. 21, 22 Moreover, studies have shown that the change of the iliac trabecular bone texture can 

predict osteoporosis in the aspects of its surface texture, volume and thickness. 22  

This study was highly motivated by a series of work towards a potential low cost 

osteoporosis prescreening method using dental imaging data. 3- 7 The widely used dental panoramic 

radiography is cost-effective since it is often a by-product of routine dental examination. In 

particular, trabecular bone structures in the jaws have been studied for their correlation to bone 

porosity. White and Rudolph showed that the trabecular patterns of osteoporosis patients are 

altered compared to normal subjects. 6 White used fractal dimension to analyze the trabecular bone 

structure in relation to osteoporosis. 5 Southard et al. showed that the radiographic fractal 

dimension of the alveolar process bone is correlated with the bone density, using radiographic 

images. 4 Pham et al. found that panoramic radiographs can be used for assessment of trabecular 

bone pattern with the aid of a visual index. 3 Yang et al. found that oestrogen deficiency can result 

in microarchitectural alterations of trabecular bone in both the mandible and the tibia. 7 

Recently, there has been a trend to include cone beam computed tomography in three-

dimensional dental examinations. 23 Consequently, it is of interest to study how the trabecular 

patterns in CBCT correlate with bone porosity. Though the correlation between dental trabecular 

pattern and osteoporosis has been discovered using dental panoramic radiography and CT, 8, 24 



such correlation is not directly available in dental CBCT. One reason lies in that dental CBCT 

usually has a low resolution (e.g., 0.3~0.4mm), which causes serious blur in trabecular structures 

which are typically around 0.1 mm in bone thickness. Furthermore, due to the distortion of CBCT 

measurement from dental CT values, there has been a debate on whether CBCT measurement 

can be used to infer bone mineral densities. 21, 25- 27   

Despite the large number of studies showing the positive correlation of texture features 

with changes in trabecular patterns, there is still a gap towards a practical solution using trabecular 

analysis for osteoporosis prescreening. Advanced image analysis and statistical learning tools 

have been expected to be used to address this issue. 5 On the other hand, there have been great 

progresses in the field of texture analysis and machine learning, as well as their applications to 

medical image analysis tasks.  

In previous studies, 4, 6, 13- 15 only basic texture descriptors, such as intensity and Fourier 

analysis, have been used to confirm the correlation between the loss of bone mass and the 

trabecular patterns. It has also been observed that these features by themselves are insufficient to 

be used for clinical diagnosis or prescreening purposes. A potential way to address this issue is to 

exploit multiple texture descriptors and combine them together with advanced statistical learning 

tools. The focus of this paper is on the first step to investigate various high dimensional texture 

features, including both classical texture descriptors and recently proposed ones.  

The result of the study moved one step further along this direction. It demonstrated a 

series of texture features at four different ROIs for capturing variations in trabecular patterns in 

dental CBCT. This observation validated the hypothesis that CBCT volumes can be used for cross 

gender-age analysis of trabecular patterns in the jaws. The results also showed that (1) fractal-

analysis based features work generally better than intensity features, (2) FO vs FY and FY vs MO 

have significantly more effective features than other pairs, which can be attributed to the loss of 



bone mass in female seniors, (3) trabecular patterns in the body of the mandible are more 

correlated with gender-age changes than the maxilla and the mandibular condyles, and (4) the 

mean intensity is less effective than several fractal dimension features and several components in 

intensity histogram, which may be due to the fact of instability of CBCT intensity. 21, 27 

The results also supported the use of CBCT for the analysis of bone mineral density. 

Though the detailed trabecular structure is unavailable due to the low resolution used in clinical 

data, the texture pattern in CBCT still carries useful information reflecting statistics of trabecular 

patterns, such as the density and regularity of the bone structures. Furthermore, though the CBCT 

measurement may be distorted from the CT values, some structure-relevant features (e.g., those 

based on fractal analysis) can still provide discriminative information for separating different 

trabecular patterns.  

In summary, the experiment results validated that the cross gender-age variation of 

trabecular patterns correlates significantly with many texture features on CBCT. It is highly 

desirable that the imaging tests used in dentistry are fully exploited to generate the maximum 

diagnostic information related to systemic conditions such as osteoporosis. The results also 

showed that rich texture descriptors such as intensity histograms and multifractal spectrum can 

provide complementary or more discriminative information than previously proposed simple texture 

descriptors.  

In the future, it is expected to combine these features together, using modern machine 

learning tools such as ensemble learning 28 or kernel learning, 29 to predict the loss of bone mass. 

Such a predictor will in turn provide the basis of dental image-based osteoporosis prescreening. 
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Table 1. Trabecular bone 3D image sample quantity 

Group Male younger 
than 40 (MY) 

Male older than 
40 (MO) 

Female younger 
than 40 (FY) 

Female older 
than 40 (FO) 

Number of volumes 8 27 13 48 

 

 

 

 

 

 



Table 2. P-values of all gender-age pairs over different ROIs and features. The abbreviations used are: MY for Male Younger than 40, MO for 

Male Older than 40, FY for Female Younger than 40, and FO for Female Older than 40. The four ROIs are: ROI 1 for maxillary premolar, ROI 2 for 

mandibular first premolar, ROI 3 for mandibular lateral incisor, and ROI 4 for mandibular condyle. 

Intensity Features Fractal Dimension Features 
 

μ h1 h2 h3 h4 h5 h6 h7 h8 ψ φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 

ROI 1 0.065 0.011 0.240 0.704 0.050 0.028 0.090 0.234 0.524 0.105 0.012 0.047 0.926 0.097 <.001 <.001 0.065 0.279 

ROI 2 <.001 <.001 0.104 <.001 <.001 0.576 <.001 <.001 <.001 <.001 0.059 <.001 <.001 <.001 <.001 <.001 0.023 <.001 

ROI 3 <.001 0.011 0.012 0.480 0.323 0.744 0.202 0.599 0.039 <.001 <.001 0.249 <.001 <.001 <.001 <.001 0.003 <.001 

FO  

vs 

FY 

ROI 4 0.097 0.002 0.001 0.070 0.007 0.676 0.001 0.016 0.053 0.163 0.260 0.369 0.133 0.215 0.119 0.054 0.182 0.609 

ROI 1 0.710 0.001 0.069 0.033 0.175 0.600 0.208 0.439 0.829 0.350 0.740 0.078 0.060 0.958 0.160 0.059 0.248 0.285 

ROI 2 0.261 0.004 0.603 0.058 0.340 0.583 0.552 0.342 0.610 0.010 0.770 0.206 0.127 0.132 0.262 0.887 0.754 0.107 

ROI 3 0.092 0.015 0.824 0.010 0.183 0.493 0.006 0.193 0.667 0.046 0.096 0.041 0.118 0.926 0.466 0.040 0.260 0.043 

FO 

vs 

MO 

ROI 4 0.002 0.654 0.205 0.103 0.244 0.375 0.134 0.100 0.388 0.354 <.001 0.017 0.986 0.629 0.013 0.008 0.036 0.413 

ROI 1 0.238 0.002 0.108 <.001 0.004 0.092 0.477 0.804 0.516 0.467 0.854 0.003 0.026 0.773 0.206 0.396 0.714 0.044 

ROI 2 0.235 0.136 0.507 0.390 0.258 0.564 0.031 0.025 0.024 0.018 0.735 0.220 0.412 0.380 0.335 0.048 0.017 0.021 

ROI 3 0.736 0.358 0.621 <.001 0.007 0.962 0.881 0.947 0.998 0.514 0.075 0.015 0.339 0.169 <.001 <.001 0.070 <.001 

FO 

vs 

MY 

ROI 4 0.421 0.878 0.238 0.231 0.092 0.054 0.550 0.202 0.309 0.866 0.539 0.056 0.461 0.102 0.145 0.152 0.221 0.503 



ROI 1 0.040 0.71 0.824 0.156 0.718 0.014 0.010 0.097 0.431 0.024 0.031 0.555 0.205 0.139 0.015 0.009 0.344 0.918 

ROI 2 <.001 <.001 0.058 <.001 <.001 0.262 <.001 <.001 <.001 <.001 0.045 <.001 <.001 <.001 <.001 <.001 0.076 <.001 

ROI 3 <.001 <.001 0.018 0.007 0.050 0.896 0.410 0.149 0.030 <.001 <.001 0.013 <.001 <.001 0.002 0.020 0.290 0.001 

FY 

vs 

MO 

ROI 4 0.007 0.035 <.001 0.874 0.329 0.781 0.046 0.112 0.250 0.932 0.003 0.312 0.174 0.142 0.002 <.001 0.008 0.228 

ROI 1 0.012 0.501 0.622 0.003 0.258 0.621 0.127 0.270 0.332 0.047 0.084 0.270 0.083 0.361 0.198 0.063 0.277 0.292 

ROI 2 0.131 0.108 0.396 0.064 0.019 0.329 0.758 0.057 0.043 0.128 0.088 0.040 0.095 0.079 0.071 0.138 0.655 0.539 

ROI 3 0.001 0.006 0.109 <.001 0.002 0.756 0.382 0.602 0.088 0.040 0.216 0.005 0.002 0.028 0.163 0.201 0.404 0.109 

FY 

vs 

MY 

ROI 4 0.058 0.053 0.006 0.753 0.001 0.191 0.060 0.324 0.684 0.221 0.215 0.302 0.087 0.029 0.025 0.026 0.053 0.321 

ROI 1 0.404 0.725 0.732 0.028 0.171 0.046 0.940 0.714 0.595 0.982 0.967 0.072 0.456 0.812 0.737 0.720 0.700 0.230 

ROI 2 0.080 0.005 0.317 0.091 0.105 0.825 0.013 0.007 0.014 <.001 0.902 0.052 0.105 0.080 0.100 0.042 0.052 0.151 

ROI 3 0.261 0.283 0.528 0.351 0.146 0.597 0.079 0.286 0.778 0.081 0.006 0.467 0.867 0.199 0.039 0.176 0.713 0.074 

MO 

vs 

MY 

ROI 4 0.463 0.690 0.637 0.670 0.034 0.240 0.686 0.700 0.643 0.367 0.351 0.839 0.520 0.178 0.410 0.205 0.336 0.995 



Table 3. The effectiveness of different features. NoT is short for Number of Tests, which is the number of the tests in which a feature significantly 

(p≤0.05) distinguishes two categories. For example, in the first column of the first row, NoT=9 means that, in the first column of Table 2, 9 out of the 

24 p-values corresponding to μ are smaller than or equal to 0.05. PoT is short for Percentage of Tests, which was defined as PoT= NoT/24.  

 

 
Intensity Features Fractal Dimension Features 

Feature μ h1 h2 h3 h4 h5 h6 h7 h8 ψ φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 

NoT  9 13 5 10 11 3 8 5 7 11 8 10 6 6 11 13 5 8 

PoT 37.5 54.2 20.8 41.7 45.8 12.5 33.3 20.8 29.2 45.8 33.3 41.7 25.0 25.0 45.8 54.2 20.8 33.3 

Feature μ h1 h2 h3 h4 h5 h6 h7 h8 ψ φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 

Mean PoT 32.9±13.4 36.1±11.4 

 



Table 4. Number of effective features for each gender-age pair and ROIs. The number in a cell 

is the number of features (out of a total of 18) that are effective in the tests involving corresponding 

gender-age pairs and ROIs. For example, in the first column of the first row, 7 means that, in the 

first row of Table 2, 7 out of the 18 p-values corresponding to (FO,FY) in ROI 1 are smaller than or 

equal to 0.05. 

 FO vs FY FO vs MO FO vs MY FY vs MO FY vs MY MO vs MY 

ROI 1 7 2 6 7 3 2 

ROI 2 15 2 7 15 3 6 

ROI 3 12 7 6 14 8 2 

ROI 4 5 6 0 8 5 1 

Mean 9.75 4.25 4.75 11.0 4.75 2.75 

 
 



Figure legends 

 

Figure 1. Example trabecular CBCT cubes cropped from left condyles in our study. From left to 

right: Female Younger (FY), Female Older (FO), Male Younger (MY), and Male Older (MO). 
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Fig. 2. P-values of all gender-age pairs over different ROIs and features.  

 




